In order to improve the diagnosis and analysis ability of 3D spiral CT and to reconstruct the contour of 3D spiral CT damage image,a contour reconstruction method based on sharpening template enhancement for 3D spiral...In order to improve the diagnosis and analysis ability of 3D spiral CT and to reconstruct the contour of 3D spiral CT damage image,a contour reconstruction method based on sharpening template enhancement for 3D spiral CT damage image is proposed.This method uses the active contour LasSO model to extract the contour feature of the 3D spiral CT damage image and enhances the information by sharpening the template en.hancement technique and makes the noise separation of the 3D spiral CT damage image.The spiral CT image was procesed with ENT,and the statistical shape model of 3D spiral CT damage image was established.The.gradient algorithm is used to decompose the feature to realize the analysis and reconstruction of the contour feature of the 3D spiral CT damage image,so as to improve the adaptive feature matching ability and the ability to locate the abnormal feature points.The simulation results show that in the 3D spiral CT damage image contour reconstruction,the proposed method performs well in the feature matching of the output pixels,shortens the contour reconstruction time by 20/ms,and provides a strong ability to express the image information.The normalized reconstruction error of CES is 30%,which improves the recognition ability of 3D spiral CT damage image,and increases the signal-to noise ratio of peak output by 40 dB over other methods.展开更多
Objective: To study the clinical significance of multi-slice spiral CT 3-dimensional (3D) portography in portal vein tumor thrombosis of hepatocellular cacinoma.Methods: 57 cases undergoing 3D portography were collect...Objective: To study the clinical significance of multi-slice spiral CT 3-dimensional (3D) portography in portal vein tumor thrombosis of hepatocellular cacinoma.Methods: 57 cases undergoing 3D portography were collected, of which 6 cases were normal, 5 cases were subjected to cirrhosis and hypertension of portal vein, 42 cases had portal tumor thrombus of hepatic cancer, and the remaining 4 cases showed lymph node enlargment in hilar of liver. All data of the patients came from conventional multi-slice spiral CT double phase of liver. Contrast media was 1.5–2 ml/kg with the injection rate being 2.5–3 ml/s. Axis and 3D portography was analyzed and compared in 42 cases of portal tumor thrombus of hepatic cancer.Results: According to portal tumor thrombus position, 42 cases were fallen into three categories: left (13 cases), right (20 cases), main (9 cases) of potal vein. There was no difference between axis and 3D portography in displaying portal tumor thrombus of hepatic cancer (P>0.05), but 3D portography showing collateral branches was better than axis portography after main portal vein thrombus.Conclusion: Multi-slice spiral CT 3D portography can display the position and types of portal tumor thrombus of hepatic cancer. 3D combined with axis portography can better evaluate the portal tumor thrombus of hepatic cancer and guide to select the therapies. Key words portal vein - tumor thrombus - multi-slice CT - 3 dimension imaging展开更多
In order to improve the registration accuracy of brain magnetic resonance images(MRI),some deep learning registration methods use segmentation images for training model.How-ever,the segmentation values are constant fo...In order to improve the registration accuracy of brain magnetic resonance images(MRI),some deep learning registration methods use segmentation images for training model.How-ever,the segmentation values are constant for each label,which leads to the gradient variation con-centrating on the boundary.Thus,the dense deformation field(DDF)is gathered on the boundary and there even appears folding phenomenon.In order to fully leverage the label information,the morphological opening and closing information maps are introduced to enlarge the non-zero gradi-ent regions and improve the accuracy of DDF estimation.The opening information maps supervise the registration model to focus on smaller,narrow brain regions.The closing information maps supervise the registration model to pay more attention to the complex boundary region.Then,opening and closing morphology networks(OC_Net)are designed to automatically generate open-ing and closing information maps to realize the end-to-end training process.Finally,a new registra-tion architecture,VM_(seg+oc),is proposed by combining OC_Net and VoxelMorph.Experimental results show that the registration accuracy of VM_(seg+oc) is significantly improved on LPBA40 and OASIS1 datasets.Especially,VM_(seg+oc) can well improve registration accuracy in smaller brain regions and narrow regions.展开更多
AIM To apply real time three-dimensional transesophageal echocardiography(RT3D TEE) for quantitative and qualitative assessment of the mitral valve annulus(MVA) and tricuspid valve annulus(TVA) in the same patient.MET...AIM To apply real time three-dimensional transesophageal echocardiography(RT3D TEE) for quantitative and qualitative assessment of the mitral valve annulus(MVA) and tricuspid valve annulus(TVA) in the same patient.METHODS Our retrospective cohort study examined the MVA and TVA in 49 patients by RT3 D TEE. MVA and TVA shape were examined by TEE. The MVA and TVA volume data set images were acquired in the mid esophageal 4-chamber view. The MVA and TVA were acquired separately, with optimization of each for the highest frame rate and image quality. The 3D shape of the annuli was reconstructed using the Philips~? Q lab, MVQ ver. 6.0 MVA model software. The end-systolic frame was used. The parameters measured and compared were annular area, circumference, high-low distances(height), anterolateralposterolateral(ALPM), and anteroposterior(AP) axes. RESULTS A total of 49 patients(mean age 61 ± 14 years, 45% males) were studied. The ALPM and the AP axes of the MVA and TVA are not significantly different. The ALPM axis of the MVA was 37.9 ± 6.4 mm and 38.0 ± 5.6 mm for the TVA(P = 0.70). The AP axis of the MVA was 34.8 ± 5.7 mm and 34.9 ± 6.2 mm for the TVA(P = 0.90). The MVA and the TVA had similar circumference and area. The circumference of the MVA was 127.9 ± 16.8 mm and 125.92 ± 16.12 mm for the TVA(P = 0.23). The area of the MVA was 1103.7 ± 307.8 mm^2 and 1131.7 ± 302.0 mm^2 for the TVA(P = 0.41). The MVA and TVA are similar oval structures, but with significantly different heights. The ALPM/AP ratio for the MVA was 1.08 ± 0.33 and 1.09 ± 0.28 for the TVA(P < 0.001). The height for the MVA and TVA was 9.23 ± 2.11 mm and 4.37 ± 1.48 mm, respectively(P < 0.0001). CONCLUSION RT3 D TEE plays an unprecedented role in the management of valvular heart disease. The specific and exclusive shape of the MVA and TVA was revealed in our study of patients studied. Moreover, the intricate codependence of the MVA and the TVA depends on their distinctive shapes. This realization seen from our study will allow us to better understand the role valvular disease plays in disease states such as hypertrophic cardiomyopathy and pulmonary hypertension.展开更多
As a novel three dimensional digital image correlation (3D DIC) method, the bi-prism-based single lens (BSL) 3D DIC method has been proposed and developed in recent years. Making use ofa bi-prism, this method is a...As a novel three dimensional digital image correlation (3D DIC) method, the bi-prism-based single lens (BSL) 3D DIC method has been proposed and developed in recent years. Making use ofa bi-prism, this method is able to perform a 3D DIC measurement using only a single camera. Thus, the integration level of a BSL 3D DIC system could be much higher than that of the double-camera 3D DIC system. In this paper, using a small-angle bi-prism and a camera with a longer focal length, a special BSL 3D DIC system with a long working distance is designed for measurements in extreme environments. The principle of the system is first studied, and practical methods are then proposed for the system set-up and the determination of system parameters. Then, feasibility of the measurement system is verified by out-of-plane rigid-body translation tests. Finally, the BSL 3D DIC system is proven to be capable of combining with a high-temperature testing instrument to perform deformation tests in a high-temperature environment of up to 1500℃.展开更多
A new nondestructive test method-Impact Echo Scanning was introduced. Application of this method on pavement structure test was discussed. A method to increase the measurement accuracy of the test on multi-layers was ...A new nondestructive test method-Impact Echo Scanning was introduced. Application of this method on pavement structure test was discussed. A method to increase the measurement accuracy of the test on multi-layers was proposed, and was verified by field test. The test results show that the basic structural information can obtained rapidly and accurately by 3-D scanning of the impact echo system.展开更多
AIM:To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina.METHODS:Fifty volunteers were enrolled in ...AIM:To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina.METHODS:Fifty volunteers were enrolled in this study in the Ophthalmological Clinic of Cluj-Napoca,Romania,between January 2012 and January 2014. A set of 100 segmented and skeletonised human retinal images,corresponding to normal states of the retina were studied. An automatic unsupervised method for retinal vessel segmentation was applied before multifractal analysis. The multifractal analysis of digital retinal images was made with computer algorithms,applying the standard boxcounting method. Statistical analyses were performed using the Graph Pad In Stat software.RESULTS:The architecture of normal human retinal microvascular network was able to be described using the multifractal geometry. The average of generalized dimensions(D_q)for q=0,1,2,the width of the multifractal spectrum(Δα=α_(max)-α_(min))and the spectrum arms' heights difference(│Δf│)of the normal images were expressed as mean±standard deviation(SD):for segmented versions,D_0=1.7014±0.0057; D_1=1.6507±0.0058; D_2=1.5772±0.0059; Δα=0.92441±0.0085; │Δf│= 0.1453±0.0051; for skeletonised versions,D_0=1.6303±0.0051; D_1=1.6012±0.0059; D_2=1.5531± 0.0058; Δα=0.65032±0.0162; │Δf│= 0.0238±0.0161. The average of generalized dimensions(D_q)for q=0,1,2,the width of the multifractal spectrum(Δα)and the spectrum arms' heights difference(│Δf│)of the segmented versions was slightly greater than the skeletonised versions.CONCLUSION:The multifractal analysis of fundus photographs may be used as a quantitative parameter for the evaluation of the complex three-dimensional structure of the retinal microvasculature as a potential marker for early detection of topological changes associated with retinal diseases.展开更多
Victim identification through dental features is one of the main objectives of forensic dentistry.In circumstances where information regarding antemortem dental records is missing,reconstruction of a biological profil...Victim identification through dental features is one of the main objectives of forensic dentistry.In circumstances where information regarding antemortem dental records is missing,reconstruction of a biological profile can be useful as a first step toward personal identification.This reconstructive method provides valuable information,namely regarding the individual’s ancestry,through the detection and degree of expression of dental morphological traits,which may help to restrict the number of candidates for identification.Technological advances allowed the development of alternative methods for dental evaluation,that complement or substitute those already in use in clinical practice.Among these,intraoral three‑dimensional(3D)images are increasingly used in dentistry,as they have a high level of accuracy and are easy to obtain and store.However,a fundamental question regarding forensic dentistry is whether they allow recognition and analysis of dental morphological traits in detail,namely those related to ancestry.In this study,we evaluated 20 teeth morphological features using intraoral 3D imaging from 77 individuals from Northern Portugal.Our results showed that it was possible to identify and classify a large part of the main morphological traits used in the estimation of ancestry.As these 3D images present sufficient morphological detail to be classified,we believe that future applications of this technique can be expected in forensic dentistry.展开更多
Objective: To explore the application of the spiral computerized tomography (CT) image three-dimensional ( 3D ) reconstruction technique associated with the conventional radiography in the diagnosis and treatment...Objective: To explore the application of the spiral computerized tomography (CT) image three-dimensional ( 3D ) reconstruction technique associated with the conventional radiography in the diagnosis and treatment of severe talar neck fracture. Methods: Using the multi-slice spiral CT image 3D reconstruction technique, we analysed Ⅱ cases of talar neck fracture. The fractures were reduced and fixed through a minimal incision and internal fixation with titanium cannulated lag screws. Results. In the Ⅱ cases, the results of CT image 3D reconstruction were in concordance with plain radiograph in 6 case of Hawkins type Ⅱ. And the remaining 5 cases of Hawkins types Ⅲ and Ⅳ could not be classified exactly only by radiographs, one of whom was misdiagnosed. After using the CT image 3D reconstruction, the 5 cases were classified exactly before osteosynthesis. The classifications of these Ⅱ cases were confirmed finally by surgical findings. The duration of operation were 45-Ⅰ40 min, averaging 8Ⅰ min (including the duration of C-arm fluoroscopy). X-ray exposure time was 6-58 seconds, averaging 22 seconds. The blood loss was less than Ⅰ00 ml. The fracture union was achieved in 3 months. No nonunion, talus avascular necrosis or joint surface collapse occurred. Postoperative follow-up was from Ⅰ to 25 months. According to Hawkins score, excellent result was found in 6 type Ⅱ cases and Ⅰ type Ⅲ case; good result in I type Ⅲ case with both medial and lateral malleolar fracture, Ⅰ type Ⅲ with medial malleolus fractures and Ⅰ open type Ⅲ; fair result in Ⅰ open type Ⅳ with lateral malleolus fracture. Conclusions : By using the multl-slice spiral CT image 3D reconstruction associated with radiography to diagnose and treat severe talar neck fractures, the accuracy of diagnosis can be improved obviously. Based on this technique, more consummate operational plan can be designed and performed so as to achieve a better therapeutic effect.展开更多
The extremely complex anatomic relationships among bone, tumor, blood vessels and cranial nervesremains a big challenge for cranial base tumor surgery. Therefore, a good understanding of the patient specific anatomy a...The extremely complex anatomic relationships among bone, tumor, blood vessels and cranial nervesremains a big challenge for cranial base tumor surgery. Therefore, a good understanding of the patient specific anatomy and a preoperative planning are helpful and crucial for the neurosurgeons. Three dimensional (3-D) visualization of various imaging techniques have been widely explored to enhance the comprehension of volumetric data for surgical planning.展开更多
Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase a...Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase and the target azimuth/altitude coordinates to be solved may make the solution more difficult. Second, the squint angle may lead to estimation error of the vertical coordinates and distortion of the ultimate image. Traditional InlSAR imaging algorithms can not solve the above two problems effectively, so we propose a new method which combines the nonlinear least square (NLS) and coordinates transform (CT) to estimate the target coordinates, and a three-dimensional (3-D) image consistent with the real target is obtained accordingly. Simulations show that the proposed method is effective for the squint-mode InlSAR imaging.展开更多
文摘In order to improve the diagnosis and analysis ability of 3D spiral CT and to reconstruct the contour of 3D spiral CT damage image,a contour reconstruction method based on sharpening template enhancement for 3D spiral CT damage image is proposed.This method uses the active contour LasSO model to extract the contour feature of the 3D spiral CT damage image and enhances the information by sharpening the template en.hancement technique and makes the noise separation of the 3D spiral CT damage image.The spiral CT image was procesed with ENT,and the statistical shape model of 3D spiral CT damage image was established.The.gradient algorithm is used to decompose the feature to realize the analysis and reconstruction of the contour feature of the 3D spiral CT damage image,so as to improve the adaptive feature matching ability and the ability to locate the abnormal feature points.The simulation results show that in the 3D spiral CT damage image contour reconstruction,the proposed method performs well in the feature matching of the output pixels,shortens the contour reconstruction time by 20/ms,and provides a strong ability to express the image information.The normalized reconstruction error of CES is 30%,which improves the recognition ability of 3D spiral CT damage image,and increases the signal-to noise ratio of peak output by 40 dB over other methods.
文摘Objective: To study the clinical significance of multi-slice spiral CT 3-dimensional (3D) portography in portal vein tumor thrombosis of hepatocellular cacinoma.Methods: 57 cases undergoing 3D portography were collected, of which 6 cases were normal, 5 cases were subjected to cirrhosis and hypertension of portal vein, 42 cases had portal tumor thrombus of hepatic cancer, and the remaining 4 cases showed lymph node enlargment in hilar of liver. All data of the patients came from conventional multi-slice spiral CT double phase of liver. Contrast media was 1.5–2 ml/kg with the injection rate being 2.5–3 ml/s. Axis and 3D portography was analyzed and compared in 42 cases of portal tumor thrombus of hepatic cancer.Results: According to portal tumor thrombus position, 42 cases were fallen into three categories: left (13 cases), right (20 cases), main (9 cases) of potal vein. There was no difference between axis and 3D portography in displaying portal tumor thrombus of hepatic cancer (P>0.05), but 3D portography showing collateral branches was better than axis portography after main portal vein thrombus.Conclusion: Multi-slice spiral CT 3D portography can display the position and types of portal tumor thrombus of hepatic cancer. 3D combined with axis portography can better evaluate the portal tumor thrombus of hepatic cancer and guide to select the therapies. Key words portal vein - tumor thrombus - multi-slice CT - 3 dimension imaging
基金supported by Shandong Provincial Natural Science Foundation(No.ZR2023MF062)the National Natural Science Foundation of China(No.61771230).
文摘In order to improve the registration accuracy of brain magnetic resonance images(MRI),some deep learning registration methods use segmentation images for training model.How-ever,the segmentation values are constant for each label,which leads to the gradient variation con-centrating on the boundary.Thus,the dense deformation field(DDF)is gathered on the boundary and there even appears folding phenomenon.In order to fully leverage the label information,the morphological opening and closing information maps are introduced to enlarge the non-zero gradi-ent regions and improve the accuracy of DDF estimation.The opening information maps supervise the registration model to focus on smaller,narrow brain regions.The closing information maps supervise the registration model to pay more attention to the complex boundary region.Then,opening and closing morphology networks(OC_Net)are designed to automatically generate open-ing and closing information maps to realize the end-to-end training process.Finally,a new registra-tion architecture,VM_(seg+oc),is proposed by combining OC_Net and VoxelMorph.Experimental results show that the registration accuracy of VM_(seg+oc) is significantly improved on LPBA40 and OASIS1 datasets.Especially,VM_(seg+oc) can well improve registration accuracy in smaller brain regions and narrow regions.
文摘AIM To apply real time three-dimensional transesophageal echocardiography(RT3D TEE) for quantitative and qualitative assessment of the mitral valve annulus(MVA) and tricuspid valve annulus(TVA) in the same patient.METHODS Our retrospective cohort study examined the MVA and TVA in 49 patients by RT3 D TEE. MVA and TVA shape were examined by TEE. The MVA and TVA volume data set images were acquired in the mid esophageal 4-chamber view. The MVA and TVA were acquired separately, with optimization of each for the highest frame rate and image quality. The 3D shape of the annuli was reconstructed using the Philips~? Q lab, MVQ ver. 6.0 MVA model software. The end-systolic frame was used. The parameters measured and compared were annular area, circumference, high-low distances(height), anterolateralposterolateral(ALPM), and anteroposterior(AP) axes. RESULTS A total of 49 patients(mean age 61 ± 14 years, 45% males) were studied. The ALPM and the AP axes of the MVA and TVA are not significantly different. The ALPM axis of the MVA was 37.9 ± 6.4 mm and 38.0 ± 5.6 mm for the TVA(P = 0.70). The AP axis of the MVA was 34.8 ± 5.7 mm and 34.9 ± 6.2 mm for the TVA(P = 0.90). The MVA and the TVA had similar circumference and area. The circumference of the MVA was 127.9 ± 16.8 mm and 125.92 ± 16.12 mm for the TVA(P = 0.23). The area of the MVA was 1103.7 ± 307.8 mm^2 and 1131.7 ± 302.0 mm^2 for the TVA(P = 0.41). The MVA and TVA are similar oval structures, but with significantly different heights. The ALPM/AP ratio for the MVA was 1.08 ± 0.33 and 1.09 ± 0.28 for the TVA(P < 0.001). The height for the MVA and TVA was 9.23 ± 2.11 mm and 4.37 ± 1.48 mm, respectively(P < 0.0001). CONCLUSION RT3 D TEE plays an unprecedented role in the management of valvular heart disease. The specific and exclusive shape of the MVA and TVA was revealed in our study of patients studied. Moreover, the intricate codependence of the MVA and the TVA depends on their distinctive shapes. This realization seen from our study will allow us to better understand the role valvular disease plays in disease states such as hypertrophic cardiomyopathy and pulmonary hypertension.
基金supported by the National Natural Science Foundation of China(Grant Nos.11672153,11232008&11227801)
文摘As a novel three dimensional digital image correlation (3D DIC) method, the bi-prism-based single lens (BSL) 3D DIC method has been proposed and developed in recent years. Making use ofa bi-prism, this method is able to perform a 3D DIC measurement using only a single camera. Thus, the integration level of a BSL 3D DIC system could be much higher than that of the double-camera 3D DIC system. In this paper, using a small-angle bi-prism and a camera with a longer focal length, a special BSL 3D DIC system with a long working distance is designed for measurements in extreme environments. The principle of the system is first studied, and practical methods are then proposed for the system set-up and the determination of system parameters. Then, feasibility of the measurement system is verified by out-of-plane rigid-body translation tests. Finally, the BSL 3D DIC system is proven to be capable of combining with a high-temperature testing instrument to perform deformation tests in a high-temperature environment of up to 1500℃.
基金Funded by the National Natural Science Foundation of China(No.50472042) Doctoral Base Fund of Ministry of Education of China(No.20050497010)
文摘A new nondestructive test method-Impact Echo Scanning was introduced. Application of this method on pavement structure test was discussed. A method to increase the measurement accuracy of the test on multi-layers was proposed, and was verified by field test. The test results show that the basic structural information can obtained rapidly and accurately by 3-D scanning of the impact echo system.
基金the Program"Partnerships in priority domains"with the support of the National Education Ministry,the Executive Agency for Higher Education,Research,Development and Innovation Funding (UEFISCDI),Romania (Project code:PN-II-PT-PCCA-2013-4-1232)
文摘AIM:To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina.METHODS:Fifty volunteers were enrolled in this study in the Ophthalmological Clinic of Cluj-Napoca,Romania,between January 2012 and January 2014. A set of 100 segmented and skeletonised human retinal images,corresponding to normal states of the retina were studied. An automatic unsupervised method for retinal vessel segmentation was applied before multifractal analysis. The multifractal analysis of digital retinal images was made with computer algorithms,applying the standard boxcounting method. Statistical analyses were performed using the Graph Pad In Stat software.RESULTS:The architecture of normal human retinal microvascular network was able to be described using the multifractal geometry. The average of generalized dimensions(D_q)for q=0,1,2,the width of the multifractal spectrum(Δα=α_(max)-α_(min))and the spectrum arms' heights difference(│Δf│)of the normal images were expressed as mean±standard deviation(SD):for segmented versions,D_0=1.7014±0.0057; D_1=1.6507±0.0058; D_2=1.5772±0.0059; Δα=0.92441±0.0085; │Δf│= 0.1453±0.0051; for skeletonised versions,D_0=1.6303±0.0051; D_1=1.6012±0.0059; D_2=1.5531± 0.0058; Δα=0.65032±0.0162; │Δf│= 0.0238±0.0161. The average of generalized dimensions(D_q)for q=0,1,2,the width of the multifractal spectrum(Δα)and the spectrum arms' heights difference(│Δf│)of the segmented versions was slightly greater than the skeletonised versions.CONCLUSION:The multifractal analysis of fundus photographs may be used as a quantitative parameter for the evaluation of the complex three-dimensional structure of the retinal microvasculature as a potential marker for early detection of topological changes associated with retinal diseases.
文摘Victim identification through dental features is one of the main objectives of forensic dentistry.In circumstances where information regarding antemortem dental records is missing,reconstruction of a biological profile can be useful as a first step toward personal identification.This reconstructive method provides valuable information,namely regarding the individual’s ancestry,through the detection and degree of expression of dental morphological traits,which may help to restrict the number of candidates for identification.Technological advances allowed the development of alternative methods for dental evaluation,that complement or substitute those already in use in clinical practice.Among these,intraoral three‑dimensional(3D)images are increasingly used in dentistry,as they have a high level of accuracy and are easy to obtain and store.However,a fundamental question regarding forensic dentistry is whether they allow recognition and analysis of dental morphological traits in detail,namely those related to ancestry.In this study,we evaluated 20 teeth morphological features using intraoral 3D imaging from 77 individuals from Northern Portugal.Our results showed that it was possible to identify and classify a large part of the main morphological traits used in the estimation of ancestry.As these 3D images present sufficient morphological detail to be classified,we believe that future applications of this technique can be expected in forensic dentistry.
文摘Objective: To explore the application of the spiral computerized tomography (CT) image three-dimensional ( 3D ) reconstruction technique associated with the conventional radiography in the diagnosis and treatment of severe talar neck fracture. Methods: Using the multi-slice spiral CT image 3D reconstruction technique, we analysed Ⅱ cases of talar neck fracture. The fractures were reduced and fixed through a minimal incision and internal fixation with titanium cannulated lag screws. Results. In the Ⅱ cases, the results of CT image 3D reconstruction were in concordance with plain radiograph in 6 case of Hawkins type Ⅱ. And the remaining 5 cases of Hawkins types Ⅲ and Ⅳ could not be classified exactly only by radiographs, one of whom was misdiagnosed. After using the CT image 3D reconstruction, the 5 cases were classified exactly before osteosynthesis. The classifications of these Ⅱ cases were confirmed finally by surgical findings. The duration of operation were 45-Ⅰ40 min, averaging 8Ⅰ min (including the duration of C-arm fluoroscopy). X-ray exposure time was 6-58 seconds, averaging 22 seconds. The blood loss was less than Ⅰ00 ml. The fracture union was achieved in 3 months. No nonunion, talus avascular necrosis or joint surface collapse occurred. Postoperative follow-up was from Ⅰ to 25 months. According to Hawkins score, excellent result was found in 6 type Ⅱ cases and Ⅰ type Ⅲ case; good result in I type Ⅲ case with both medial and lateral malleolar fracture, Ⅰ type Ⅲ with medial malleolus fractures and Ⅰ open type Ⅲ; fair result in Ⅰ open type Ⅳ with lateral malleolus fracture. Conclusions : By using the multl-slice spiral CT image 3D reconstruction associated with radiography to diagnose and treat severe talar neck fractures, the accuracy of diagnosis can be improved obviously. Based on this technique, more consummate operational plan can be designed and performed so as to achieve a better therapeutic effect.
文摘The extremely complex anatomic relationships among bone, tumor, blood vessels and cranial nervesremains a big challenge for cranial base tumor surgery. Therefore, a good understanding of the patient specific anatomy and a preoperative planning are helpful and crucial for the neurosurgeons. Three dimensional (3-D) visualization of various imaging techniques have been widely explored to enhance the comprehension of volumetric data for surgical planning.
基金supported by the China National Funds for Distinguished Young Scientists (Grant No.61025006)
文摘Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase and the target azimuth/altitude coordinates to be solved may make the solution more difficult. Second, the squint angle may lead to estimation error of the vertical coordinates and distortion of the ultimate image. Traditional InlSAR imaging algorithms can not solve the above two problems effectively, so we propose a new method which combines the nonlinear least square (NLS) and coordinates transform (CT) to estimate the target coordinates, and a three-dimensional (3-D) image consistent with the real target is obtained accordingly. Simulations show that the proposed method is effective for the squint-mode InlSAR imaging.