A pre-processing procedure is designed for a space-surface bistatic synthetic aperture radar (SS-BSAR) system when a time domain image formation algorithm is employed. Three crucial technical issues relating to the ...A pre-processing procedure is designed for a space-surface bistatic synthetic aperture radar (SS-BSAR) system when a time domain image formation algorithm is employed. Three crucial technical issues relating to the procedure are fully discussed. Firstly, unlike image formation algorithms operating in the frequency domain, a time domain algorithm requires the accurate global navigation satellite system (GNSS) time and position. This paper proposes acquisition of this information using a time-and-spatial transfer with precise ephemeris and interpolation. Secondly, synchronization errors and compensation methods in SS-BSAR are analyzed. Finally, taking the non-ideal factors in the echo and the compatibility of image formation algorithms into account, a matched filter based on the minimum delay is constructed. Experimental result using real data suggest the pre-processing is functioning properly.展开更多
After almost fifteen years, we remind our fellow scientists of the Stochastic process, a natural mechanism for obtaining the Shroud Body Image. The above process is considered the only source of energy present in an a...After almost fifteen years, we remind our fellow scientists of the Stochastic process, a natural mechanism for obtaining the Shroud Body Image. The above process is considered the only source of energy present in an ancient tomb: the thermal one emitted by the corpse of Jesus Christ. It, for all corpses, is notoriously so weak that the only process that could be triggered is the Stochastic one. However, the best-known expert scientists in the Shroud of Turin investigation did not take this model into account, even if it guaranteed a latent image, typical of the Stochastic process, and a fibrils distribution as appears on the Shroud surface. The above scientists and many others had already chosen the Radiative hypothesis, which is based on the emission of radiation (Ultraviolet) and nuclear particles (Protons and Neutrons) by the corpse of Jesus Christ. These emissions are impossible;conversely, if they were true, we would have to talk about miracles. Today, after four decades, it would be appropriate to accept that the Radiative hypothesis (which in the Turin Shroud case becomes a miraculous hypothesis) cannot be in line with both Physics and Theology. We think that we should all be more fiscal when we judge our work.展开更多
The radiative hypothesis has been revisited showing other characteristics, produced by the protons used as dyes in total disagree with the ones of the Body Image that appears on the Shroud of Turin. Our investigations...The radiative hypothesis has been revisited showing other characteristics, produced by the protons used as dyes in total disagree with the ones of the Body Image that appears on the Shroud of Turin. Our investigations highlight that for the protons to reach 3.7 cm in air, the distance that measures the range of discoloration effects, must be emitted with an energy of about 1.5 MeV using Wilson and Brobeck’s empirical formula and 1.35 MeV using Bethe’s. This last formula provides a result closer to reality. Bethe shows that the penetration depth is greater than that calculated empirically. Such a value of proton energy (1.35 MeV) makes it possible to satisfy the discoloration effects range for the Shroud but it is incompatible with a depth of penetration in linen that is only 200 nm. Moreover, using the same subatomic particles, we obtained on the colored linen a distribution of energy represented by regression but not linear. Thus, also the possible I(z) correlation, between color intensity and body-sheet distance, which should be due to the oxidizing action of protons, does not agree with that extracted from the Shroud of Turin.展开更多
In this paper, we are proposing a compression-based multiple color target detection for practical near real-time optical pattern recognition applications. By reducing the size of the color images to its utmost compres...In this paper, we are proposing a compression-based multiple color target detection for practical near real-time optical pattern recognition applications. By reducing the size of the color images to its utmost compression, the speed and the storage of the system are greatly increased. We have used the powerful Fringe-adjusted joint transform correlation technique to successfully detect compression-based multiple targets in colored images. The colored image is decomposed into three fundamental color components images (Red, Green, Blue) and they are separately processed by three-channel correlators. The outputs of the three channels are then combined into a single correlation output. To eliminate the false alarms and zero-order terms due to multiple desired and undesired targets in a scene, we have used the reference shifted phase-encoded and the reference phase-encoded techniques. The performance of the proposed compression-based technique is assessed through many computer simulation tests for images polluted by strong additive Gaussian and Salt & Pepper noises as well as reference occluded images. The robustness of the scheme is demonstrated for severely compressed images (up to 94% ratio), strong noise densities (up to 0.5), and large reference occlusion images (up to 75%).展开更多
The achievements made in China in the field of the theory of conjugation for reflecting prisms are outlined which mainly includes 6 theorems, 2 corollaries, over 30 formulae, 4 matric operators, 20 characteristic para...The achievements made in China in the field of the theory of conjugation for reflecting prisms are outlined which mainly includes 6 theorems, 2 corollaries, over 30 formulae, 4 matric operators, 20 characteristic parameters, a new principle for dassification, and a new system of graphical tabulation for reflecting prisms. As an approach to developing the theory, an imaginary physical model called 'rigid body's kinematics model' has been creatively initiated to simulate the real physical phenomena of both image formation and image motion for reflecting prisms. Such a method of treatment has been successfully making the evolving theory more complete, more systematic, more generalized, and unique as well.展开更多
We discuss how recent advances in phase-recovery imaging techniques in combination with plasmonic UTSs (ultrathin condensers) with a semiconductor substrate have paved the way for the development of novel optical na...We discuss how recent advances in phase-recovery imaging techniques in combination with plasmonic UTSs (ultrathin condensers) with a semiconductor substrate have paved the way for the development of novel optical nanoscopes. These optical nanoscopes are capable of imaging the intensity and the phase of the electric field distribution at the sample's plane.展开更多
Bistatic SAR possesses characteristic of the azimuth space-variant when the velocities of transmitter and receiver are not equal. The geometric model of BiSAR with the parallel trajectories and the nonequal platform v...Bistatic SAR possesses characteristic of the azimuth space-variant when the velocities of transmitter and receiver are not equal. The geometric model of BiSAR with the parallel trajectories and the nonequal platform velocities is presented. Analyzing the motion relationship of transmitter and receiver, the formula of azimuth spacevariant is derived in time domain. Via Taylor polynomial expansions, the azimuth space-variant is factorized by four terms: zero-order, first-order, second-order, and third-order term. And, their impacts on impulse response are illuminated. Some characteristics about azimuth space-variant of airborne BiSAR case are exhibited by simulation experiments, and these simulated results are coincident with the formulae of azimuth space-variant.展开更多
The number of constraints imposed on the sur- face, the light source, the camera model and in particular the initial information makes shape from shading (SFS) very dif- ficult for real applications. There are a con...The number of constraints imposed on the sur- face, the light source, the camera model and in particular the initial information makes shape from shading (SFS) very dif- ficult for real applications. There are a considerable number of approaches which require an initial data about the 3D ob- ject such as boundary conditions (BC). However, it is difficult to obtain these information for each point of the object Edge in the image, thus the application of these approaches is lim- ited. This paper shows an improvement of the Global View method proposed by Zhu and Shi [1]. The main improvement is that we make the resolution done automatically without any additional information on the 3D object. The method in- volves four steps. The first step is to determine the singular curves and the relationship between them. In the second step, we generate the global graph, determine the sub-graphs, and determine the partial and global configuration. The proposed method to determine the convexity and the concavity of the singular curves is applied in the third step. Finally, we apply the Fast-Marching method to reconstruct the 3D object. Our approach is successfully tested on some synthetic and real im- ages. Also, the obtained results are compared and discussed with some previous methods.展开更多
基金supported by the Electro-Magnetic Remote Sensing Defence Technology Centre (EMRS-DTC) of the UK Ministry of Defence(EMRS/DTC/1/27)the China Scholarship Council (2009611064)the Program for New Century Excellent Talents in University (NCET-07-0223)
文摘A pre-processing procedure is designed for a space-surface bistatic synthetic aperture radar (SS-BSAR) system when a time domain image formation algorithm is employed. Three crucial technical issues relating to the procedure are fully discussed. Firstly, unlike image formation algorithms operating in the frequency domain, a time domain algorithm requires the accurate global navigation satellite system (GNSS) time and position. This paper proposes acquisition of this information using a time-and-spatial transfer with precise ephemeris and interpolation. Secondly, synchronization errors and compensation methods in SS-BSAR are analyzed. Finally, taking the non-ideal factors in the echo and the compatibility of image formation algorithms into account, a matched filter based on the minimum delay is constructed. Experimental result using real data suggest the pre-processing is functioning properly.
文摘After almost fifteen years, we remind our fellow scientists of the Stochastic process, a natural mechanism for obtaining the Shroud Body Image. The above process is considered the only source of energy present in an ancient tomb: the thermal one emitted by the corpse of Jesus Christ. It, for all corpses, is notoriously so weak that the only process that could be triggered is the Stochastic one. However, the best-known expert scientists in the Shroud of Turin investigation did not take this model into account, even if it guaranteed a latent image, typical of the Stochastic process, and a fibrils distribution as appears on the Shroud surface. The above scientists and many others had already chosen the Radiative hypothesis, which is based on the emission of radiation (Ultraviolet) and nuclear particles (Protons and Neutrons) by the corpse of Jesus Christ. These emissions are impossible;conversely, if they were true, we would have to talk about miracles. Today, after four decades, it would be appropriate to accept that the Radiative hypothesis (which in the Turin Shroud case becomes a miraculous hypothesis) cannot be in line with both Physics and Theology. We think that we should all be more fiscal when we judge our work.
文摘The radiative hypothesis has been revisited showing other characteristics, produced by the protons used as dyes in total disagree with the ones of the Body Image that appears on the Shroud of Turin. Our investigations highlight that for the protons to reach 3.7 cm in air, the distance that measures the range of discoloration effects, must be emitted with an energy of about 1.5 MeV using Wilson and Brobeck’s empirical formula and 1.35 MeV using Bethe’s. This last formula provides a result closer to reality. Bethe shows that the penetration depth is greater than that calculated empirically. Such a value of proton energy (1.35 MeV) makes it possible to satisfy the discoloration effects range for the Shroud but it is incompatible with a depth of penetration in linen that is only 200 nm. Moreover, using the same subatomic particles, we obtained on the colored linen a distribution of energy represented by regression but not linear. Thus, also the possible I(z) correlation, between color intensity and body-sheet distance, which should be due to the oxidizing action of protons, does not agree with that extracted from the Shroud of Turin.
文摘In this paper, we are proposing a compression-based multiple color target detection for practical near real-time optical pattern recognition applications. By reducing the size of the color images to its utmost compression, the speed and the storage of the system are greatly increased. We have used the powerful Fringe-adjusted joint transform correlation technique to successfully detect compression-based multiple targets in colored images. The colored image is decomposed into three fundamental color components images (Red, Green, Blue) and they are separately processed by three-channel correlators. The outputs of the three channels are then combined into a single correlation output. To eliminate the false alarms and zero-order terms due to multiple desired and undesired targets in a scene, we have used the reference shifted phase-encoded and the reference phase-encoded techniques. The performance of the proposed compression-based technique is assessed through many computer simulation tests for images polluted by strong additive Gaussian and Salt & Pepper noises as well as reference occluded images. The robustness of the scheme is demonstrated for severely compressed images (up to 94% ratio), strong noise densities (up to 0.5), and large reference occlusion images (up to 75%).
文摘The achievements made in China in the field of the theory of conjugation for reflecting prisms are outlined which mainly includes 6 theorems, 2 corollaries, over 30 formulae, 4 matric operators, 20 characteristic parameters, a new principle for dassification, and a new system of graphical tabulation for reflecting prisms. As an approach to developing the theory, an imaginary physical model called 'rigid body's kinematics model' has been creatively initiated to simulate the real physical phenomena of both image formation and image motion for reflecting prisms. Such a method of treatment has been successfully making the evolving theory more complete, more systematic, more generalized, and unique as well.
文摘We discuss how recent advances in phase-recovery imaging techniques in combination with plasmonic UTSs (ultrathin condensers) with a semiconductor substrate have paved the way for the development of novel optical nanoscopes. These optical nanoscopes are capable of imaging the intensity and the phase of the electric field distribution at the sample's plane.
基金Sichuan Provincial Youth Science and Technology Foundation (06ZQ026-006)
文摘Bistatic SAR possesses characteristic of the azimuth space-variant when the velocities of transmitter and receiver are not equal. The geometric model of BiSAR with the parallel trajectories and the nonequal platform velocities is presented. Analyzing the motion relationship of transmitter and receiver, the formula of azimuth spacevariant is derived in time domain. Via Taylor polynomial expansions, the azimuth space-variant is factorized by four terms: zero-order, first-order, second-order, and third-order term. And, their impacts on impulse response are illuminated. Some characteristics about azimuth space-variant of airborne BiSAR case are exhibited by simulation experiments, and these simulated results are coincident with the formulae of azimuth space-variant.
文摘The number of constraints imposed on the sur- face, the light source, the camera model and in particular the initial information makes shape from shading (SFS) very dif- ficult for real applications. There are a considerable number of approaches which require an initial data about the 3D ob- ject such as boundary conditions (BC). However, it is difficult to obtain these information for each point of the object Edge in the image, thus the application of these approaches is lim- ited. This paper shows an improvement of the Global View method proposed by Zhu and Shi [1]. The main improvement is that we make the resolution done automatically without any additional information on the 3D object. The method in- volves four steps. The first step is to determine the singular curves and the relationship between them. In the second step, we generate the global graph, determine the sub-graphs, and determine the partial and global configuration. The proposed method to determine the convexity and the concavity of the singular curves is applied in the third step. Finally, we apply the Fast-Marching method to reconstruct the 3D object. Our approach is successfully tested on some synthetic and real im- ages. Also, the obtained results are compared and discussed with some previous methods.