To further explore the human visual system( HVS),the perceptual grouping( PG), which has been proven to play an important role in the HVS, is adopted to design an effective image quality assessment( IQA) model. ...To further explore the human visual system( HVS),the perceptual grouping( PG), which has been proven to play an important role in the HVS, is adopted to design an effective image quality assessment( IQA) model. Compared with the existing fixed-window-based models, the proposed one is an adaptive window-like model that introduces the perceptual grouping strategy into the IQA model. It works as follows: first,it preprocesses the images by clustering similar pixels into a group to the greatest extent; then the structural similarity is used to compute the similarity of the superpixels between reference and distorted images; finally, it integrates all the similarity of superpixels of an image to yield a quality score. Experimental results on three databases( LIVE, IVC and MICT) showthat the proposed method yields good performance in terms of correlation with human judgments of visual quality.展开更多
Recently,deep image-hiding techniques have attracted considerable attention in covert communication and high-capacity information hiding.However,these approaches have some limitations.For example,a cover image lacks s...Recently,deep image-hiding techniques have attracted considerable attention in covert communication and high-capacity information hiding.However,these approaches have some limitations.For example,a cover image lacks self-adaptability,information leakage,or weak concealment.To address these issues,this study proposes a universal and adaptable image-hiding method.First,a domain attention mechanism is designed by combining the Atrous convolution,which makes better use of the relationship between the secret image domain and the cover image domain.Second,to improve perceived human similarity,perceptual loss is incorporated into the training process.The experimental results are promising,with the proposed method achieving an average pixel discrepancy(APD)of 1.83 and a peak signal-to-noise ratio(PSNR)value of 40.72 dB between the cover and stego images,indicative of its high-quality output.Furthermore,the structural similarity index measure(SSIM)reaches 0.985 while the learned perceptual image patch similarity(LPIPS)remarkably registers at 0.0001.Moreover,self-testing and cross-experiments demonstrate the model’s adaptability and generalization in unknown hidden spaces,making it suitable for diverse computer vision tasks.展开更多
This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image...This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image.Four new clutter metrics based on image quality assessment are introduced,among which the Haar wavelet-based perceptual similarity index,known as HaarPSI,provides the best target acquisition prediction results.It is shown that the similarity between the target and the background at the boundary between visually lossless and visually lossy compression does not change significantly compared to the case when an uncompressed image is used.In future work,through subjective tests,it is necessary to check whether this presence of compression at the threshold of just noticeable differences will affect the human target acquisition performance.Similarity values are compared with the results of subjective tests of the well-known target Search_2 database,where the degree of agreement between objective and subjective scores,measured through linear correlation,reached a value of 90%.展开更多
Quality is a very important parameter for all objects and their functionalities. In image-based object recognition, image quality is a prime criterion. For authentic image quality evaluation, ground truth is required....Quality is a very important parameter for all objects and their functionalities. In image-based object recognition, image quality is a prime criterion. For authentic image quality evaluation, ground truth is required. But in practice, it is very difficult to find the ground truth. Usually, image quality is being assessed by full reference metrics, like MSE (Mean Square Error) and PSNR (Peak Signal to Noise Ratio). In contrast to MSE and PSNR, recently, two more full reference metrics SSIM (Structured Similarity Indexing Method) and FSIM (Feature Similarity Indexing Method) are developed with a view to compare the structural and feature similarity measures between restored and original objects on the basis of perception. This paper is mainly stressed on comparing different image quality metrics to give a comprehensive view. Experimentation with these metrics using benchmark images is performed through denoising for different noise concentrations. All metrics have given consistent results. However, from representation perspective, SSIM and FSIM are normalized, but MSE and PSNR are not;and from semantic perspective, MSE and PSNR are giving only absolute error;on the other hand, SSIM and PSNR are giving perception and saliency-based error. So, SSIM and FSIM can be treated more understandable than the MSE and PSNR.展开更多
AIM: To compare the computed tomography(CT) dose and image quality with the filtered back projection against the iterative reconstruction and CT with a minimal electronic noise detector. METHODS: A lung phantom(Chest ...AIM: To compare the computed tomography(CT) dose and image quality with the filtered back projection against the iterative reconstruction and CT with a minimal electronic noise detector. METHODS: A lung phantom(Chest Phantom N1 by Kyoto Kagaku) was scanned with 3 different CT scanners: the Somatom Sensation, the Definition Flash and the Definition Edge(all from Siemens, Erlangen, Germany). The scan parameters were identical to the Siemens presetting for THORAX ROUTINE(scan length 35 cm and FOV 33 cm). Nine different exposition levels were examined(reference mAs/peek voltage): 100/120, 100/100, 100/80, 50/120, 50/100, 50/80, 25/120, 25/100 and 25 mAs/80 kVp. Images from the SOMATOM Sensation were reconstructed using classic filtered back projection. Iterative reconstruction(SAFIRE, level 3) was performed for the two other scanners. A Stellar detector was used with the Somatom Definition Edge. The CT doses were represented by the dose length products(DLPs)(mGycm) provided by the scanners. Signal, contrast, noise and subjective image quality were recorded by two different radiologists with 10 and 3 years of experience in chest CT radiology. To determine the average dose reduction between two scanners, the integral of the dose difference was calculated from the lowest to the highest noise level. RESULTS: When using iterative reconstruction(IR) instead of filtered back projection(FBP), the average dose reduction was 30%, 52% and 80% for bone, soft tissue and air, respectively, for the same image quality(P 【 0.0001). The recently introduced Stellar detector(Sd) lowered the radiation dose by an additional 27%, 54% and 70% for bone, soft tissue and air, respectively(P 【 0.0001). The benefit of dose reduction was larger at lower dose levels. With the same radiation dose, an average of 34%(22%-37%) and 25%(13%-46%) more contrast to noise was achieved by changing from FBP to IR and from IR to Sd, respectively. For the same contrast to noise level, an average of 59%(46%-71%) and 51%(38%-68%) dose reduction was produced for IR and Sd, respectively. For the same subjective image quality, the dose could be reduced by 25%(2%-42%) and 44%(33%-54%) using IR and Sd, respectively. CONCLUSION: This study showed an average dose reduction between 27% and 70% for the new Stellar detector, which is equivalent to using IR instead of FBP.展开更多
Considering that there is no single full reference image quality assessment method that could give the best performance in all situations, some multi-method fusion metrics were proposed. Machine learning techniques ar...Considering that there is no single full reference image quality assessment method that could give the best performance in all situations, some multi-method fusion metrics were proposed. Machine learning techniques are often involved in such multi-method fusion metrics so that its output would be more consistent with human visual perceptions. On the other hand, the robustness and generalization ability of these multi-method fusion metrics are questioned because of the scarce of images with mean opinion scores. In order to comprehensively validate whether or not the generalization ability of such multi-method fusion IQA metrics are satisfying, we construct a new image database which contains up to 60 reference images. The newly built image database is then used to test the generalization ability of different multi-method fusion IQA metrics. Cross database validation experiment indicates that in our new image database, the performances of all the multi-method fusion IQA metrics have no statistical significant different with some single-method IQA metrics such as FSIM and MAD. In the end, a thorough analysis is given to explain why the performance of multi-method fusion IQA framework drop significantly in cross database validation.展开更多
AIM: To compare the effect of oral erythromycin vs no preparation with prokinetics on the transit time and the image quality of capsule endoscopy (CE) in evaluating small bowel (SB) pathology. METHODS: We conducted a ...AIM: To compare the effect of oral erythromycin vs no preparation with prokinetics on the transit time and the image quality of capsule endoscopy (CE) in evaluating small bowel (SB) pathology. METHODS: We conducted a retrospective, blinded (to the type of preparation) review of 100 CE studies, 50 with no preparation with prokinetics from one medical center (Group A) and 50 from another center with administration of a single dose of 200 mg oral erythromycin 1 h prior to CE (Group B). Gastric, SB and total transit times were calculated, the presence of bile in the duodenum was scored, as was cleanliness within the proximal, middle and distal intestine. RESULTS: The erythromycin group had a slightly shorter gastric transit time (21 min vs 28 min, with no statistical significance). SB transit time was similar for both groups (all P > 0.05). Total transit time was almost identical in both groups. The rate of incomplete examination was 16% for Group A and 10% for Group B (P = 0.37). Bile and cleanliness scores in different parts of the intestine were similar for the two groups (P > 0.05). CONCLUSION: Preparation for capsule endoscopy with erythromycin does not affect SB or total transit time. It tends to reduce gastric transit time, but it does not increase the cecum-reaching rate. Erythromycin does not adversely affect image quality. We consider the routine use of oral erythromycin preparation as being unjustified, although it might be considered in patients with known prolonged gastric emptying time.展开更多
Multi-modality medical image fusion has more and more important applications in medical image analysis and understanding. In this paper, we develop and apply a multi-resolution method based on wavelet pyramid to fuse ...Multi-modality medical image fusion has more and more important applications in medical image analysis and understanding. In this paper, we develop and apply a multi-resolution method based on wavelet pyramid to fuse medical images from different modalities such as PET-MRI and CT-MRI. In particular, we evaluate the different fusion results when applying different selection rules and obtain optimum combination of fusion parameters.展开更多
In this paper,a new approach is proposed to determine whether the content of an image is authentic or modified with a focus on detecting complex image tampering.Detecting image tampering without any prior information ...In this paper,a new approach is proposed to determine whether the content of an image is authentic or modified with a focus on detecting complex image tampering.Detecting image tampering without any prior information of the original image is a challenging problem since unknown diverse manipulations may have different characteristics and so do various formats of images.Our principle is that image processing,no matter how complex,may affect image quality,so image quality metrics can be used to distinguish tampered images.In particular,based on the alteration of image quality in modified blocks,the proposed method can locate the tampered areas.Referring to four types of effective no-reference image quality metrics,we obtain 13 features to present an image.The experimental results show that the proposed method is very promising on detecting image tampering and locating the locally tampered areas especially in realistic scenarios.展开更多
Objective To retrospectively evaluate the effects of saline administration following contrast material injection, abdominal compression and two delay phase acquisition on image quality improvement of computed tomograp...Objective To retrospectively evaluate the effects of saline administration following contrast material injection, abdominal compression and two delay phase acquisition on image quality improvement of computed tomographic urography (CTU). Methods Medical records and informed consents of patients were obtained. In totally 122 patients (50 men, 72 women), two delay phase images with CTU were performed. Scans began simultaneously with a contrast bolus injection of 100 mL (300 mgI/mL) followed by a saline bolus injection of 100 mL at a rate of 5 mL/s. Two delay phase images were taken at 400 and 550 seconds for each patient. Examinations were taken by using abdominal compression or not. The distention and opacification of the urinary tract were evaluated by two interpreters together on transverse images and post-processing images. Effects of four techniques (saline administration and abdominal compression, saline administration only, compression only, and neither saline administration nor compression) and two delay phase acquisition on image quality improvement were analysed by using ANOVA and Chi-square test. Results Saline administration improved opacification (P<0.05) and increased overall image quality (P<0.01) of the intrarenal collecting system and proximal ureter. Abdominal compression (P<0.05) and delayed phase image acquisition of 550 seconds (P<0.01) all improved distention of the intrarenal collecting system and proximal ureter but did not improve opacification. No statistically significant effects on the distal ureter were found. However, there were more visualized distal ureteral segments with the longer imaging delay. Conclusion Saline administration, abdominal compression and longer imaging delays are all effective in improving image quality of 64-detector row CTU.展开更多
It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural si...It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural similarity based image quality assessment was proposed under the assumption that the Human Visual System(HVS)is highly adapted for extracting structural information from an image.While the demand on high color quality increases in the media industry,color loss will make the visual quality different.In this paper,we proposed an improved quality assessment(QA)method by adding color comparison into the structural similarity(SSIM)measurement system for evaluating color image quality.Then we divided the task of similarity measurement into four comparisons:luminance,contrast,structure,and color.Experimental results show that the predicted quality scores of the proposed method are more effective and consistent with visual quality than the classical methods using five different distortion types of color image sets.展开更多
Blind image quality assessment(BIQA)is of fundamental importance in low-level computer vision community.Increasing interest has been drawn in exploiting deep neural networks for BIQA.Despite of the notable success ach...Blind image quality assessment(BIQA)is of fundamental importance in low-level computer vision community.Increasing interest has been drawn in exploiting deep neural networks for BIQA.Despite of the notable success achieved,there is a broad consensus that training deep convolutional neural networks(DCNN)heavily relies on massive annotated data.Unfortunately,BIQA is typically a small sample problem,resulting the generalization ability of BIQA severely restricted.In order to improve the accuracy and generalization ability of BIQA metrics,this work proposed a totally opinion-unaware BIQA in which no subjective annotations are involved in the training stage.Multiple full-reference image quality assessment(FR-IQA)metrics are employed to label the distorted image as a substitution of subjective quality annotation.A deep neural network(DNN)is trained to blindly predict the multiple FR-IQA score in absence of corresponding pristine image.In the end,a selfsupervised FR-IQA score aggregator implemented by adversarial auto-encoder pools the predictions of multiple FR-IQA scores into the final quality predicting score.Even though none of subjective scores are involved in the training stage,experimental results indicate that our proposed full reference induced BIQA framework is as competitive as state-of-the-art BIQA metrics.展开更多
Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based o...Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based on the Ada Boost BP neural network in the wavelet domain(WABNN) is proposed. A 36-dimensional image feature vector is constructed by extracting natural scene statistics(NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering(LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method.展开更多
Most of Image Quality Assessment (IQA) metrics consist of two processes. In the first process, quality map of image is measured locally. In the second process, the last quality score is converted from the quality map ...Most of Image Quality Assessment (IQA) metrics consist of two processes. In the first process, quality map of image is measured locally. In the second process, the last quality score is converted from the quality map by using the pooling strategy. The first process had been made effective and significant progresses, while the second process was always done in simple ways. In the second process of the pooling strategy, the optimal perceptual pooling weights should be determined and computed according to Human Visual System (HVS). Thus, a reliable spatial pooling mathematical model based on HVS is an important issue worthy of study. In this paper, a new Visual Perceptual Pooling Strategy (VPPS) for IQA is presented based on contrast sensitivity and luminance sensitivity of HVS. Experimental results with the LIVE database show that the visual perceptual weights, obtained by the proposed pooling strategy, can effectively and significantly improve the performances of the IQA metrics with Mean Structural SIMilarity (MSSIM) or Phase Quantization Code (PQC). It is confirmed that the proposed VPPS demonstrates promising results for improving the performances of existing IQA metrics.展开更多
Usually image assessment methods could be classified into two categories: subjective as-sessments and objective ones. The latter are judged by the correlation coefficient with subjective quality measurement MOS (Mean ...Usually image assessment methods could be classified into two categories: subjective as-sessments and objective ones. The latter are judged by the correlation coefficient with subjective quality measurement MOS (Mean Opinion Score). This paper presents an objective quality assessment algorithm special for binary images. In the algorithm, noise energy is measured by Euclidean distance between noises and signals and the structural effects caused by noise are described by Euler number change. The assessment on image quality is calculated quantitatively in terms of PSNR (Peak Signal to Noise Ratio). Our experiments show that the results of the algorithm are highly correlative with subjective MOS and the algorithm is more simple and computational saving than traditional objective assessment methods.展开更多
Virtual reality(VR) environment can provide immersive experience to viewers.Under the VR environment, providing a good quality of experience is extremely important.Therefore, in this paper, we present an image quality...Virtual reality(VR) environment can provide immersive experience to viewers.Under the VR environment, providing a good quality of experience is extremely important.Therefore, in this paper, we present an image quality assessment(IQA) study on omnidirectional images. We first build an omnidirectional IQA(OIQA) database, including 16 source images with their corresponding 320 distorted images. We add four commonly encountered distortions. These distortions are JPEG compression, JPEG2000 compression, Gaussian blur, and Gaussian noise. Then we conduct a subjective quality evaluation study in the VR environment based on the OIQA database. Considering that visual attention is more important in VR environment, head and eye movement data are also tracked and collected during the quality rating experiments. The 16 raw and their corresponding distorted images,subjective quality assessment scores, and the head-orientation data and eye-gaze data together constitute the OIQA database. Based on the OIQA database, we test some state-of-the-art full-reference IQA(FR-IQA) measures on equirectangular format or cubic formatomnidirectional images. The results show that applying FR-IQA metrics on cubic format omnidirectional images could improve their performance. The performance of some FR-IQA metrics combining the saliency weight of three different types are also tested based on our database. Some new phenomena different from traditional IQA are observed.展开更多
Perceptual image quality assessment(IQA)is one of the most indispensable yet challenging problems in image processing and computer vision.It is quite necessary to develop automatic and efficient approaches that can ac...Perceptual image quality assessment(IQA)is one of the most indispensable yet challenging problems in image processing and computer vision.It is quite necessary to develop automatic and efficient approaches that can accurately predict perceptual image quality consistently with human subjective evaluation.To further improve the prediction accuracy for the distortion of color images,in this paper,we propose a novel effective and efficient IQA model,called perceptual gradient similarity deviation(PGSD).Based on the gradient magnitude similarity,we proposed a gradient direction selection method to automatically determine the pixel-wise perceptual gradient.The luminance and chrominance channels are both took into account to characterize the quality degradation caused by intensity and color distortions.Finally,a multi-scale strategy is utilized and pooled with different weights to incorporate image details at different resolutions.Experimental results on LIVE,CSIQ and TID2013 databases demonstrate the superior performances of the proposed algorithm.展开更多
Based on compressive sampling transmission model, we demonstrate here a method of quality evaluation for the reconstruction images, which is promising for the transmission of unstructured signal with reduced dimension...Based on compressive sampling transmission model, we demonstrate here a method of quality evaluation for the reconstruction images, which is promising for the transmission of unstructured signal with reduced dimension. By this method, the auxiliary information of the recovery image quality is obtained as a feedback to control number of measurements from compressive sampling video stream. Therefore, the number of measurements can be easily derived at the condition of the absence of information sparsity, and the recovery image quality is effectively improved. Theoretical and experimental results show that this algorithm can estimate the quality of images effectively and is in well consistency with the traditional objective evaluation algorithm.展开更多
Image quality assessment(IQA)is constantly innovating,but there are still three types of stickers that have not been resolved:the“content sticker”-limitation of training set,the“annotation sticker”-subjective inst...Image quality assessment(IQA)is constantly innovating,but there are still three types of stickers that have not been resolved:the“content sticker”-limitation of training set,the“annotation sticker”-subjective instability in opinion scores and the“distortion sticker”-disordered distortion settings.In this paper,a No-Reference Image Quality Assessment(NR IQA)approach is proposed to deal with the problems.For“content sticker”,we introduce the idea of pairwise comparison and generate a largescale ranking set to pre-train the network;For“annotation sticker”,the absolute noise-containing subjective scores are transformed into ranking comparison results,and we design an indirect unsupervised regression based on EigenValue Decomposition(EVD);For“distortion sticker”,we propose a perception-based distortion classification method,which makes the distortion types clear and refined.Experiments have proved that our NR IQA approach Experiments show that the algorithm performs well and has good generalization ability.Furthermore,the proposed perception based distortion classification method would be able to provide insights on how the visual related studies may be developed and to broaden our understanding of human visual system.展开更多
X-ray-computed tomography (CT) has become one of the most important investigation procedures worldwide. The study aimed to assess image quality parameters, mainly noise, and radiation doses during abdominal examinatio...X-ray-computed tomography (CT) has become one of the most important investigation procedures worldwide. The study aimed to assess image quality parameters, mainly noise, and radiation doses during abdominal examination. This study examined the diagnostic parameters (kilo voltage, tube current time product, slice thickness, and pitch) and their effects on image quality as well as the radiation doses received from computed tomography scanners using phantom. The study carried out in four CT centers in Sudan. The study applied prospective and experimental methods. The study demonstrated there was a linear correlation between diagnostic parameters and image noise. The reduction in milli-ampere second and peak kilo voltage increased the image noise. Moreover increasing the pitch led to an increase in the image noise, whereas increasing the slice thickness, reduced the image noise. There was also a linear relationship between kilo voltage and radiation dose at Elnileen diagnostic center characterized by an increase kilo voltages values which led to an increase in the radiation dose by 92% and a reduction in the image noise by 83%. However, at Antalya medical center, increasing in kilo voltage values led to an increase in the radiation dose by 35% and a reduction in the image noise by 26%. Also increasing in milli-ampere second values led to an increase in the radiation dose by 49% and a reduction in the image noise by 46% in a phantom compared with an increase in radiation dose by 82% and a reduction in the image noise by 51% in patients .The study found that an optimal protocol for adult abdominal scan at Antalya medical center was 4.22HU for image noise and 10.45 mGy for radiation dose when using 120 kVp, 300 mAs, 5 mm slice thickness and pitch of 0.8. At Elnileen diagnostic center, however, the optimal protocol was 5.4 HU for image noise and 5.4 mGy for radiation dose using 130 kVp, 50 mAs, 10 mm slice thickness and pitch of 2. In addition, the quality control tests for image quality parameters carried out at the two centers were performed by using the Chat Phan phantom and all the tests were within the acceptable limits, according to Sudan Atomic Energy Commission (SAEC) Standardizations. The study concludes with a number of recommendations, such as;the necessity for an extensive collaboration among manufacturers, radiologists, technologists and physicists to find a plan to decrease patient radiation dose (ALARA Principle) from computed tomography scanner.展开更多
基金The National Natural Science Foundation of China(No.81272501)the National Basic Research Program of China(973Program)(No.2011CB707904)Taishan Scholars Program of Shandong Province,China(No.ts20120505)
文摘To further explore the human visual system( HVS),the perceptual grouping( PG), which has been proven to play an important role in the HVS, is adopted to design an effective image quality assessment( IQA) model. Compared with the existing fixed-window-based models, the proposed one is an adaptive window-like model that introduces the perceptual grouping strategy into the IQA model. It works as follows: first,it preprocesses the images by clustering similar pixels into a group to the greatest extent; then the structural similarity is used to compute the similarity of the superpixels between reference and distorted images; finally, it integrates all the similarity of superpixels of an image to yield a quality score. Experimental results on three databases( LIVE, IVC and MICT) showthat the proposed method yields good performance in terms of correlation with human judgments of visual quality.
基金supported by the National Key R&D Program of China(Grant Number 2021YFB2700900)the National Natural Science Foundation of China(Grant Numbers 62172232,62172233)the Jiangsu Basic Research Program Natural Science Foundation(Grant Number BK20200039).
文摘Recently,deep image-hiding techniques have attracted considerable attention in covert communication and high-capacity information hiding.However,these approaches have some limitations.For example,a cover image lacks self-adaptability,information leakage,or weak concealment.To address these issues,this study proposes a universal and adaptable image-hiding method.First,a domain attention mechanism is designed by combining the Atrous convolution,which makes better use of the relationship between the secret image domain and the cover image domain.Second,to improve perceived human similarity,perceptual loss is incorporated into the training process.The experimental results are promising,with the proposed method achieving an average pixel discrepancy(APD)of 1.83 and a peak signal-to-noise ratio(PSNR)value of 40.72 dB between the cover and stego images,indicative of its high-quality output.Furthermore,the structural similarity index measure(SSIM)reaches 0.985 while the learned perceptual image patch similarity(LPIPS)remarkably registers at 0.0001.Moreover,self-testing and cross-experiments demonstrate the model’s adaptability and generalization in unknown hidden spaces,making it suitable for diverse computer vision tasks.
文摘This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image.Four new clutter metrics based on image quality assessment are introduced,among which the Haar wavelet-based perceptual similarity index,known as HaarPSI,provides the best target acquisition prediction results.It is shown that the similarity between the target and the background at the boundary between visually lossless and visually lossy compression does not change significantly compared to the case when an uncompressed image is used.In future work,through subjective tests,it is necessary to check whether this presence of compression at the threshold of just noticeable differences will affect the human target acquisition performance.Similarity values are compared with the results of subjective tests of the well-known target Search_2 database,where the degree of agreement between objective and subjective scores,measured through linear correlation,reached a value of 90%.
文摘Quality is a very important parameter for all objects and their functionalities. In image-based object recognition, image quality is a prime criterion. For authentic image quality evaluation, ground truth is required. But in practice, it is very difficult to find the ground truth. Usually, image quality is being assessed by full reference metrics, like MSE (Mean Square Error) and PSNR (Peak Signal to Noise Ratio). In contrast to MSE and PSNR, recently, two more full reference metrics SSIM (Structured Similarity Indexing Method) and FSIM (Feature Similarity Indexing Method) are developed with a view to compare the structural and feature similarity measures between restored and original objects on the basis of perception. This paper is mainly stressed on comparing different image quality metrics to give a comprehensive view. Experimentation with these metrics using benchmark images is performed through denoising for different noise concentrations. All metrics have given consistent results. However, from representation perspective, SSIM and FSIM are normalized, but MSE and PSNR are not;and from semantic perspective, MSE and PSNR are giving only absolute error;on the other hand, SSIM and PSNR are giving perception and saliency-based error. So, SSIM and FSIM can be treated more understandable than the MSE and PSNR.
文摘AIM: To compare the computed tomography(CT) dose and image quality with the filtered back projection against the iterative reconstruction and CT with a minimal electronic noise detector. METHODS: A lung phantom(Chest Phantom N1 by Kyoto Kagaku) was scanned with 3 different CT scanners: the Somatom Sensation, the Definition Flash and the Definition Edge(all from Siemens, Erlangen, Germany). The scan parameters were identical to the Siemens presetting for THORAX ROUTINE(scan length 35 cm and FOV 33 cm). Nine different exposition levels were examined(reference mAs/peek voltage): 100/120, 100/100, 100/80, 50/120, 50/100, 50/80, 25/120, 25/100 and 25 mAs/80 kVp. Images from the SOMATOM Sensation were reconstructed using classic filtered back projection. Iterative reconstruction(SAFIRE, level 3) was performed for the two other scanners. A Stellar detector was used with the Somatom Definition Edge. The CT doses were represented by the dose length products(DLPs)(mGycm) provided by the scanners. Signal, contrast, noise and subjective image quality were recorded by two different radiologists with 10 and 3 years of experience in chest CT radiology. To determine the average dose reduction between two scanners, the integral of the dose difference was calculated from the lowest to the highest noise level. RESULTS: When using iterative reconstruction(IR) instead of filtered back projection(FBP), the average dose reduction was 30%, 52% and 80% for bone, soft tissue and air, respectively, for the same image quality(P 【 0.0001). The recently introduced Stellar detector(Sd) lowered the radiation dose by an additional 27%, 54% and 70% for bone, soft tissue and air, respectively(P 【 0.0001). The benefit of dose reduction was larger at lower dose levels. With the same radiation dose, an average of 34%(22%-37%) and 25%(13%-46%) more contrast to noise was achieved by changing from FBP to IR and from IR to Sd, respectively. For the same contrast to noise level, an average of 59%(46%-71%) and 51%(38%-68%) dose reduction was produced for IR and Sd, respectively. For the same subjective image quality, the dose could be reduced by 25%(2%-42%) and 44%(33%-54%) using IR and Sd, respectively. CONCLUSION: This study showed an average dose reduction between 27% and 70% for the new Stellar detector, which is equivalent to using IR instead of FBP.
基金supported by “the Fundamental Research Funds for the Central Universities” No.2018CUCTJ081
文摘Considering that there is no single full reference image quality assessment method that could give the best performance in all situations, some multi-method fusion metrics were proposed. Machine learning techniques are often involved in such multi-method fusion metrics so that its output would be more consistent with human visual perceptions. On the other hand, the robustness and generalization ability of these multi-method fusion metrics are questioned because of the scarce of images with mean opinion scores. In order to comprehensively validate whether or not the generalization ability of such multi-method fusion IQA metrics are satisfying, we construct a new image database which contains up to 60 reference images. The newly built image database is then used to test the generalization ability of different multi-method fusion IQA metrics. Cross database validation experiment indicates that in our new image database, the performances of all the multi-method fusion IQA metrics have no statistical significant different with some single-method IQA metrics such as FSIM and MAD. In the end, a thorough analysis is given to explain why the performance of multi-method fusion IQA framework drop significantly in cross database validation.
文摘AIM: To compare the effect of oral erythromycin vs no preparation with prokinetics on the transit time and the image quality of capsule endoscopy (CE) in evaluating small bowel (SB) pathology. METHODS: We conducted a retrospective, blinded (to the type of preparation) review of 100 CE studies, 50 with no preparation with prokinetics from one medical center (Group A) and 50 from another center with administration of a single dose of 200 mg oral erythromycin 1 h prior to CE (Group B). Gastric, SB and total transit times were calculated, the presence of bile in the duodenum was scored, as was cleanliness within the proximal, middle and distal intestine. RESULTS: The erythromycin group had a slightly shorter gastric transit time (21 min vs 28 min, with no statistical significance). SB transit time was similar for both groups (all P > 0.05). Total transit time was almost identical in both groups. The rate of incomplete examination was 16% for Group A and 10% for Group B (P = 0.37). Bile and cleanliness scores in different parts of the intestine were similar for the two groups (P > 0.05). CONCLUSION: Preparation for capsule endoscopy with erythromycin does not affect SB or total transit time. It tends to reduce gastric transit time, but it does not increase the cecum-reaching rate. Erythromycin does not adversely affect image quality. We consider the routine use of oral erythromycin preparation as being unjustified, although it might be considered in patients with known prolonged gastric emptying time.
基金the National Natural Science Foundation of China (No. 19675005).
文摘Multi-modality medical image fusion has more and more important applications in medical image analysis and understanding. In this paper, we develop and apply a multi-resolution method based on wavelet pyramid to fuse medical images from different modalities such as PET-MRI and CT-MRI. In particular, we evaluate the different fusion results when applying different selection rules and obtain optimum combination of fusion parameters.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60971095 and No.61172109)Artificial Intelligence Key Laboratory of Sichuan Province(Grant No.2012RZJ01)the Fundamental Research Funds for the Central Universities(Grant No.DUT13RC201)
文摘In this paper,a new approach is proposed to determine whether the content of an image is authentic or modified with a focus on detecting complex image tampering.Detecting image tampering without any prior information of the original image is a challenging problem since unknown diverse manipulations may have different characteristics and so do various formats of images.Our principle is that image processing,no matter how complex,may affect image quality,so image quality metrics can be used to distinguish tampered images.In particular,based on the alteration of image quality in modified blocks,the proposed method can locate the tampered areas.Referring to four types of effective no-reference image quality metrics,we obtain 13 features to present an image.The experimental results show that the proposed method is very promising on detecting image tampering and locating the locally tampered areas especially in realistic scenarios.
文摘Objective To retrospectively evaluate the effects of saline administration following contrast material injection, abdominal compression and two delay phase acquisition on image quality improvement of computed tomographic urography (CTU). Methods Medical records and informed consents of patients were obtained. In totally 122 patients (50 men, 72 women), two delay phase images with CTU were performed. Scans began simultaneously with a contrast bolus injection of 100 mL (300 mgI/mL) followed by a saline bolus injection of 100 mL at a rate of 5 mL/s. Two delay phase images were taken at 400 and 550 seconds for each patient. Examinations were taken by using abdominal compression or not. The distention and opacification of the urinary tract were evaluated by two interpreters together on transverse images and post-processing images. Effects of four techniques (saline administration and abdominal compression, saline administration only, compression only, and neither saline administration nor compression) and two delay phase acquisition on image quality improvement were analysed by using ANOVA and Chi-square test. Results Saline administration improved opacification (P<0.05) and increased overall image quality (P<0.01) of the intrarenal collecting system and proximal ureter. Abdominal compression (P<0.05) and delayed phase image acquisition of 550 seconds (P<0.01) all improved distention of the intrarenal collecting system and proximal ureter but did not improve opacification. No statistically significant effects on the distal ureter were found. However, there were more visualized distal ureteral segments with the longer imaging delay. Conclusion Saline administration, abdominal compression and longer imaging delays are all effective in improving image quality of 64-detector row CTU.
文摘It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural similarity based image quality assessment was proposed under the assumption that the Human Visual System(HVS)is highly adapted for extracting structural information from an image.While the demand on high color quality increases in the media industry,color loss will make the visual quality different.In this paper,we proposed an improved quality assessment(QA)method by adding color comparison into the structural similarity(SSIM)measurement system for evaluating color image quality.Then we divided the task of similarity measurement into four comparisons:luminance,contrast,structure,and color.Experimental results show that the predicted quality scores of the proposed method are more effective and consistent with visual quality than the classical methods using five different distortion types of color image sets.
基金supported by the Public Welfare Technology Application Research Project of Zhejiang Province,China(No.LGF21F010001)the Key Research and Development Program of Zhejiang Province,China(Grant No.2019C01002)the Key Research and Development Program of Zhejiang Province,China(Grant No.2021C03138)。
文摘Blind image quality assessment(BIQA)is of fundamental importance in low-level computer vision community.Increasing interest has been drawn in exploiting deep neural networks for BIQA.Despite of the notable success achieved,there is a broad consensus that training deep convolutional neural networks(DCNN)heavily relies on massive annotated data.Unfortunately,BIQA is typically a small sample problem,resulting the generalization ability of BIQA severely restricted.In order to improve the accuracy and generalization ability of BIQA metrics,this work proposed a totally opinion-unaware BIQA in which no subjective annotations are involved in the training stage.Multiple full-reference image quality assessment(FR-IQA)metrics are employed to label the distorted image as a substitution of subjective quality annotation.A deep neural network(DNN)is trained to blindly predict the multiple FR-IQA score in absence of corresponding pristine image.In the end,a selfsupervised FR-IQA score aggregator implemented by adversarial auto-encoder pools the predictions of multiple FR-IQA scores into the final quality predicting score.Even though none of subjective scores are involved in the training stage,experimental results indicate that our proposed full reference induced BIQA framework is as competitive as state-of-the-art BIQA metrics.
基金supported by the National Natural Science Foundation of China(61471194 61705104)+1 种基金the Science and Technology on Avionics Integration Laboratory and Aeronautical Science Foundation of China(20155552050)the Natural Science Foundation of Jiangsu Province(BK20170804)
文摘Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based on the Ada Boost BP neural network in the wavelet domain(WABNN) is proposed. A 36-dimensional image feature vector is constructed by extracting natural scene statistics(NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering(LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method.
基金Supported by the National Natural Science Foundation of China (No. 60832003, 60902096, 61171163, 61071120)the Scientific Research Foundation of Graduate School of Ningbo University
文摘Most of Image Quality Assessment (IQA) metrics consist of two processes. In the first process, quality map of image is measured locally. In the second process, the last quality score is converted from the quality map by using the pooling strategy. The first process had been made effective and significant progresses, while the second process was always done in simple ways. In the second process of the pooling strategy, the optimal perceptual pooling weights should be determined and computed according to Human Visual System (HVS). Thus, a reliable spatial pooling mathematical model based on HVS is an important issue worthy of study. In this paper, a new Visual Perceptual Pooling Strategy (VPPS) for IQA is presented based on contrast sensitivity and luminance sensitivity of HVS. Experimental results with the LIVE database show that the visual perceptual weights, obtained by the proposed pooling strategy, can effectively and significantly improve the performances of the IQA metrics with Mean Structural SIMilarity (MSSIM) or Phase Quantization Code (PQC). It is confirmed that the proposed VPPS demonstrates promising results for improving the performances of existing IQA metrics.
基金Supported by Innovation Fund for Small Technology Based Firms, China (No.04C26213301189)Science and Technology Foundation by Beijng Jiaotong University (No.2005SM009)the Key Laboratory of Advanced Information Science and Network Technology of Beijing (No.TDXX0509).
文摘Usually image assessment methods could be classified into two categories: subjective as-sessments and objective ones. The latter are judged by the correlation coefficient with subjective quality measurement MOS (Mean Opinion Score). This paper presents an objective quality assessment algorithm special for binary images. In the algorithm, noise energy is measured by Euclidean distance between noises and signals and the structural effects caused by noise are described by Euler number change. The assessment on image quality is calculated quantitatively in terms of PSNR (Peak Signal to Noise Ratio). Our experiments show that the results of the algorithm are highly correlative with subjective MOS and the algorithm is more simple and computational saving than traditional objective assessment methods.
文摘Virtual reality(VR) environment can provide immersive experience to viewers.Under the VR environment, providing a good quality of experience is extremely important.Therefore, in this paper, we present an image quality assessment(IQA) study on omnidirectional images. We first build an omnidirectional IQA(OIQA) database, including 16 source images with their corresponding 320 distorted images. We add four commonly encountered distortions. These distortions are JPEG compression, JPEG2000 compression, Gaussian blur, and Gaussian noise. Then we conduct a subjective quality evaluation study in the VR environment based on the OIQA database. Considering that visual attention is more important in VR environment, head and eye movement data are also tracked and collected during the quality rating experiments. The 16 raw and their corresponding distorted images,subjective quality assessment scores, and the head-orientation data and eye-gaze data together constitute the OIQA database. Based on the OIQA database, we test some state-of-the-art full-reference IQA(FR-IQA) measures on equirectangular format or cubic formatomnidirectional images. The results show that applying FR-IQA metrics on cubic format omnidirectional images could improve their performance. The performance of some FR-IQA metrics combining the saliency weight of three different types are also tested based on our database. Some new phenomena different from traditional IQA are observed.
文摘Perceptual image quality assessment(IQA)is one of the most indispensable yet challenging problems in image processing and computer vision.It is quite necessary to develop automatic and efficient approaches that can accurately predict perceptual image quality consistently with human subjective evaluation.To further improve the prediction accuracy for the distortion of color images,in this paper,we propose a novel effective and efficient IQA model,called perceptual gradient similarity deviation(PGSD).Based on the gradient magnitude similarity,we proposed a gradient direction selection method to automatically determine the pixel-wise perceptual gradient.The luminance and chrominance channels are both took into account to characterize the quality degradation caused by intensity and color distortions.Finally,a multi-scale strategy is utilized and pooled with different weights to incorporate image details at different resolutions.Experimental results on LIVE,CSIQ and TID2013 databases demonstrate the superior performances of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China (No. 60972039)Jiangsu Province Natural Science Fund Project (BK2010077)Innovation Project of SCI & Tech for College Graduates of Jiangsu Province(CXLX12 _0475)
文摘Based on compressive sampling transmission model, we demonstrate here a method of quality evaluation for the reconstruction images, which is promising for the transmission of unstructured signal with reduced dimension. By this method, the auxiliary information of the recovery image quality is obtained as a feedback to control number of measurements from compressive sampling video stream. Therefore, the number of measurements can be easily derived at the condition of the absence of information sparsity, and the recovery image quality is effectively improved. Theoretical and experimental results show that this algorithm can estimate the quality of images effectively and is in well consistency with the traditional objective evaluation algorithm.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China, "Research of Visual Perception for Impairments of Color Information in High-Definition Images" (No.20110018110001)
文摘Image quality assessment(IQA)is constantly innovating,but there are still three types of stickers that have not been resolved:the“content sticker”-limitation of training set,the“annotation sticker”-subjective instability in opinion scores and the“distortion sticker”-disordered distortion settings.In this paper,a No-Reference Image Quality Assessment(NR IQA)approach is proposed to deal with the problems.For“content sticker”,we introduce the idea of pairwise comparison and generate a largescale ranking set to pre-train the network;For“annotation sticker”,the absolute noise-containing subjective scores are transformed into ranking comparison results,and we design an indirect unsupervised regression based on EigenValue Decomposition(EVD);For“distortion sticker”,we propose a perception-based distortion classification method,which makes the distortion types clear and refined.Experiments have proved that our NR IQA approach Experiments show that the algorithm performs well and has good generalization ability.Furthermore,the proposed perception based distortion classification method would be able to provide insights on how the visual related studies may be developed and to broaden our understanding of human visual system.
文摘X-ray-computed tomography (CT) has become one of the most important investigation procedures worldwide. The study aimed to assess image quality parameters, mainly noise, and radiation doses during abdominal examination. This study examined the diagnostic parameters (kilo voltage, tube current time product, slice thickness, and pitch) and their effects on image quality as well as the radiation doses received from computed tomography scanners using phantom. The study carried out in four CT centers in Sudan. The study applied prospective and experimental methods. The study demonstrated there was a linear correlation between diagnostic parameters and image noise. The reduction in milli-ampere second and peak kilo voltage increased the image noise. Moreover increasing the pitch led to an increase in the image noise, whereas increasing the slice thickness, reduced the image noise. There was also a linear relationship between kilo voltage and radiation dose at Elnileen diagnostic center characterized by an increase kilo voltages values which led to an increase in the radiation dose by 92% and a reduction in the image noise by 83%. However, at Antalya medical center, increasing in kilo voltage values led to an increase in the radiation dose by 35% and a reduction in the image noise by 26%. Also increasing in milli-ampere second values led to an increase in the radiation dose by 49% and a reduction in the image noise by 46% in a phantom compared with an increase in radiation dose by 82% and a reduction in the image noise by 51% in patients .The study found that an optimal protocol for adult abdominal scan at Antalya medical center was 4.22HU for image noise and 10.45 mGy for radiation dose when using 120 kVp, 300 mAs, 5 mm slice thickness and pitch of 0.8. At Elnileen diagnostic center, however, the optimal protocol was 5.4 HU for image noise and 5.4 mGy for radiation dose using 130 kVp, 50 mAs, 10 mm slice thickness and pitch of 2. In addition, the quality control tests for image quality parameters carried out at the two centers were performed by using the Chat Phan phantom and all the tests were within the acceptable limits, according to Sudan Atomic Energy Commission (SAEC) Standardizations. The study concludes with a number of recommendations, such as;the necessity for an extensive collaboration among manufacturers, radiologists, technologists and physicists to find a plan to decrease patient radiation dose (ALARA Principle) from computed tomography scanner.