Background Image matching is crucial in numerous computer vision tasks such as 3D reconstruction and simultaneous visual localization and mapping.The accuracy of the matching significantly impacted subsequent studies....Background Image matching is crucial in numerous computer vision tasks such as 3D reconstruction and simultaneous visual localization and mapping.The accuracy of the matching significantly impacted subsequent studies.Because of their local similarity,when image pairs contain comparable patterns but feature pairs are positioned differently,incorrect recognition can occur as global motion consistency is disregarded.Methods This study proposes an image-matching filtering algorithm based on global motion consistency.It can be used as a subsequent matching filter for the initial matching results generated by other matching algorithms based on the principle of motion smoothness.A particular matching algorithm can first be used to perform the initial matching;then,the rotation and movement information of the global feature vectors are combined to effectively identify outlier matches.The principle is that if the matching result is accurate,the feature vectors formed by any matched point should have similar rotation angles and moving distances.Thus,global motion direction and global motion distance consistencies were used to reject outliers caused by similar patterns in different locations.Results Four datasets were used to test the effectiveness of the proposed method.Three datasets with similar patterns in different locations were used to test the results for similar images that could easily be incorrectly matched by other algorithms,and one commonly used dataset was used to test the results for the general image-matching problem.The experimental results suggest that the proposed method is more accurate than other state-of-the-art algorithms in identifying mismatches in the initial matching set.Conclusions The proposed outlier rejection matching method can significantly improve the matching accuracy for similar images with locally similar feature pairs in different locations and can provide more accurate matching results for subsequent computer vision tasks.展开更多
Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are q...Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.展开更多
In view of the fact that the traditional Hausdorff image matching algorithm is very sensitive to the image size as well as the unsatisfactory real-time performance in practical applications,an image matching algorithm...In view of the fact that the traditional Hausdorff image matching algorithm is very sensitive to the image size as well as the unsatisfactory real-time performance in practical applications,an image matching algorithm is proposed based on the combination of Yolov3.Firstly,the features of the reference image are selected for pretraining,and then the training results are used to extract the features of the real images before the coordinates of the center points of the feature area are used to complete the coarse matching.Finally,the Hausdorff algorithm is used to complete the fine image matching.Experiments show that the proposed algorithm significantly improves the speed and accuracy of image matching.Also,it is robust to rotation changes.展开更多
A novel algorithm is presented to make the results of image matching more reliable and accurate based on SIFT (Scale Invariant Feature Transform). SIFT algorithm has been identified as the most resistant matching algo...A novel algorithm is presented to make the results of image matching more reliable and accurate based on SIFT (Scale Invariant Feature Transform). SIFT algorithm has been identified as the most resistant matching algorithm to common image deformations; however, if there are similar regions in images, SIFT algorithm still generates some analogical descriptors and provides many mismatches. This paper examines the local image descriptor used by SIFT and presents a new algorithm by integrating SIFT with two-dimensional moment invariants and disparity gradient to improve the matching results. In the new algorithm, decision tree is used, and the whole matching process is divided into three levels with different primitives. Matching points are considered as correct ones only when they satisfy all the three similarity measurements. Experiment results demonstrate that the new approach is more reliable and accurate.展开更多
Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detaile...Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors.展开更多
Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are genera...Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.展开更多
The scene matching navigation is a research focus in the field of autonomous navigation,but the real-time performance of image matching algorithm is difficult to meet the needs of real navigation systems.Therefore,thi...The scene matching navigation is a research focus in the field of autonomous navigation,but the real-time performance of image matching algorithm is difficult to meet the needs of real navigation systems.Therefore,this paper proposes a fast image matching algorithm.The algorithm improves the traditional line segment extraction algorithm and combines with the Delaunay triangulation method.By combining the geometric features of points and lines,the image feature redundancy is reduced.Then,the error with confidence criterion is analyzed and the matching process is completed.The simulation results show that the proposed algorithm can still work within 3°rotation and small scale variation.In addition,the matching time is less than 0.5 s when the image size is 256 pixel×256 pixel.The proposed algorithm is suitable for autonomous navigation systems with multiple feature distribution and higher real-time requirements.展开更多
The paper analyze and improve the SIFT optimized algorithm, and proposes an image matching method for SIFT algorithm based on quasi Euclidean distance and KD-tree. Experiments show that this algorithm has matching mor...The paper analyze and improve the SIFT optimized algorithm, and proposes an image matching method for SIFT algorithm based on quasi Euclidean distance and KD-tree. Experiments show that this algorithm has matching more points, high matching accuracy, no repealed points and higher advantage of matching efficiency based on keeping the basic characteristics of SIFT algorithm unchanged, and provides precise matching point to generate precise image stitching and other related fields of the follow-up product. At the same time, this method was applied to the layout optimization and achieved good results.展开更多
A coding-based method to solve the image matching problems in stereovision measurement is presented. The solution is to add and append an identity ID to the retro-reflect point, so it can be identified efficiently und...A coding-based method to solve the image matching problems in stereovision measurement is presented. The solution is to add and append an identity ID to the retro-reflect point, so it can be identified efficiently under the complicated circumstances and has the characteristics of rotation, zooming, and deformation independence. Its design architecture and implementation process in details based on the theory of stereovision measurement are described. The method is effective on reducing processing data time, improving accuracy of image matching and automation of measuring system through experiments.展开更多
Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of ext...Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.展开更多
Object matching between two-dimensional images is an important problem in computer vision. The purpose of object matching is to decide the similarity between two objects. A new robust image matching method based on di...Object matching between two-dimensional images is an important problem in computer vision. The purpose of object matching is to decide the similarity between two objects. A new robust image matching method based on distance reciprocal was presented. The distance reciprocal is based on human visual perception. This method is simple and effective. Moreover, it is robust against noise. The experiments show that this method outperforms the Hausdorff distance, when the images with noise interfered need to be recognized.展开更多
Presents a new parallel image matching algorithm based on the concept of entropy feature vector and suitable to SIMD computer, which, in comparison with other algorithms, has the following advantages:(1)The spatial in...Presents a new parallel image matching algorithm based on the concept of entropy feature vector and suitable to SIMD computer, which, in comparison with other algorithms, has the following advantages:(1)The spatial information of an image is appropriately introduced into the definition of image entropy. (2) A large number of multiplication operations are eliminated, thus the algorithm is sped up. (3) The shortcoming of having to do global calculation in the first instance is overcome, and concludes the algorithm has very good locality and is suitable for parallel processing.展开更多
In conventional image matching methods, the image matching process is mostly based on image statistic information. One aspect neglected by all these methods is that there is much fuzzy information contained in these i...In conventional image matching methods, the image matching process is mostly based on image statistic information. One aspect neglected by all these methods is that there is much fuzzy information contained in these images. A new fuzzy matching algorithm based on fuzzy similarity for navigation is presented in this paper. Because the fuzzy theory is of the ability of making good description of the fuzzy information contained in images, the image matching method based on fuzzy similarity would look forward to producing good performance results. Experimental results using matching algorithm based on fuzzy information also demonstrate its reliability and practicability.展开更多
Multi-modal image matching is crucial in aerospace applications because it can fully exploit the complementary and valuable information contained in the amount and diversity of remote sensing images.However,it remains...Multi-modal image matching is crucial in aerospace applications because it can fully exploit the complementary and valuable information contained in the amount and diversity of remote sensing images.However,it remains a challenging task due to significant non-linear radiometric,geometric differences,and noise across different sensors.To improve the performance of heterologous image matching,this paper proposes a normalized self-similarity region descriptor to extract consistent structural information.We first construct the pointwise self-similarity region descriptor based on the Euclidean distance between adjacent image blocks to reflect the structural properties of multi-modal images.Then,a linear normalization approach is used to form Modality Independent Region Descriptor(MIRD),which can effectively distinguish structural features such as points,lines,corners,and flat between multi-modal images.To further improve the matching accuracy,the included angle cosine similarity metric is adopted to exploit the directional vector information of multi-dimensional feature descriptors.The experimental results show that the proposed MIRD has better matching accuracy and robustness for various multi-modal image matching than the state-of-the-art methods.MIRD can effectively extract consistent geometric structure features and suppress the influence of SAR speckle noise using non-local neighboring image blocks operation,effectively applied to various multi-modal image matching.展开更多
Automatic Digital Orthophoto Map(DOM)generation plays an important role in many downstream works such as land use and cover detection,urban planning,and disaster assessment.Existing DOM generation methods can generate...Automatic Digital Orthophoto Map(DOM)generation plays an important role in many downstream works such as land use and cover detection,urban planning,and disaster assessment.Existing DOM generation methods can generate promising results but always need ground object filtered DEM generation before otho-rectification;this can consume much time and produce building facade contained results.To address this problem,a pixel-by-pixel digital differential rectification-based automatic DOM generation method is proposed in this paper.Firstly,3D point clouds with texture are generated by dense image matching based on an optical flow field for a stereo pair of images,respectively.Then,the grayscale of the digital differential rectification image is extracted directly from the point clouds element by element according to the nearest neighbor method for matched points.Subsequently,the elevation is repaired grid-by-grid using the multi-layer Locally Refined B-spline(LR-B)interpolation method with triangular mesh constraint for the point clouds void area,and the grayscale is obtained by the indirect scheme of digital differential rectification to generate the pixel-by-pixel digital differentially rectified image of a single image slice.Finally,a seamline network is automatically searched using a disparity map optimization algorithm,and DOM is smartly mosaicked.The qualitative and quantitative experimental results on three datasets were produced and evaluated,which confirmed the feasibility of the proposed method,and the DOM accuracy can reach 1 Ground Sample Distance(GSD)level.The comparison experiment with the state-of-the-art commercial softwares showed that the proposed method generated DOM has a better visual effect on building boundaries and roof completeness with comparable accuracy and computational efficiency.展开更多
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed...Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.展开更多
In feature based image matching,distinctive features in images are detected and represented by feature descriptors.Matching is then carried out by assessing the similarity of the descriptors of potentially conjugate p...In feature based image matching,distinctive features in images are detected and represented by feature descriptors.Matching is then carried out by assessing the similarity of the descriptors of potentially conjugate points.In this paper,we first shortly discuss the general frame-work.Then,we review feature detection as well as the determination of affine shape and orientation of local features,before analyzing feature description in more detail.In the feature description review,the general framework of local feature description is presented first.Then,the review discusses the evolution from hand-crafted feature descriptors,e.g.SIFT(Scale Invariant Feature Transform),to machine learning and deep learning based descriptors.The machine learning models,the training loss and the respective training data of learning-based algorithms are looked at in more detail;subsequently the various advantages and challenges of the different approaches are discussed.Finally,we present and assess some current research directions before concluding the paper.展开更多
Targeting at a reliable image matching of multiple remote sensing images for the generation of digital surface models,this paper presents a geometric-constrained multi-view image matching method,based on an energy min...Targeting at a reliable image matching of multiple remote sensing images for the generation of digital surface models,this paper presents a geometric-constrained multi-view image matching method,based on an energy minimization framework.By employing a geometrical constraint,the cost value of the energy function was calculated from multiple images,and the cost value was aggregated in an image space using a semi-global optimization approach.A homography transform parameter calculation method is proposed for fast calculation of projection pixel on each image when calculation cost values.It is based on the known interior orientation parameters,exterior orientation parameters,and a given elevation value.For an efficient and reliable processing of multiple remote sensing images,the proposed matching method was performed via a coarse-to-fine strategy through image pyramid.Three sets of airborne remote sensing images were used to evaluate the performance of the proposed method.Results reveal that the multi-view image matching can improve matching reliability.Moreover,the experimental results show that the proposed method performs better than traditional methods.展开更多
In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can ...In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can be considered as an extention of regular grid point based matching. It avoids the shortcome of grid point based matching. For example, with this method, we can avoid low or even no texture area where errors frequently appear in cross correlaton matching. In the mean while, it makes full use of some mature techniques such as probability relaxation, image pyramid and the like which have already been successfully used in grid point matching process. Application of the technique to DEM generaton in different regions proved that it is more reasonable and reliable.展开更多
Cross-correlation (CC) is the most time-consuming in the implementation of image matching algorithms based on the correlation method. Therefore, how to calculate CC fast is crucial to real-time image matching. This ...Cross-correlation (CC) is the most time-consuming in the implementation of image matching algorithms based on the correlation method. Therefore, how to calculate CC fast is crucial to real-time image matching. This work reveals that the single cascading multiply-accumulate (CAMAC) and concurrent multiply-accumulate (COMAC) architectures which have been widely used in the past, actually, do not necessarily bring about a satisfactory time performance for CC. To obtain better time performance and higher resource efficiency, this paper proposes a configurable circuit involving the advantages of CAMAC and COMAC for a large amount of multiply-accumulate (MAC) operations of CC in exhaustive search. The proposed circuit works in an array manner and can better adapt to changing size image matching in real-time processing. Experimental results demonstrate that this novel circuit which involves the two structures can complete vast MAC calculations at a very high speed. Compared with existing related work, it improves the computation density further and is more flexible to use.展开更多
基金Supported by the Natural Science Foundation of China(62072388,62276146)the Industry Guidance Project Foundation of Science technology Bureau of Fujian province(2020H0047)+2 种基金the Natural Science Foundation of Science Technology Bureau of Fujian province(2019J01601)the Creation Fund project of Science Technology Bureau of Fujian province(JAT190596)Putian University Research Project(2022034)。
文摘Background Image matching is crucial in numerous computer vision tasks such as 3D reconstruction and simultaneous visual localization and mapping.The accuracy of the matching significantly impacted subsequent studies.Because of their local similarity,when image pairs contain comparable patterns but feature pairs are positioned differently,incorrect recognition can occur as global motion consistency is disregarded.Methods This study proposes an image-matching filtering algorithm based on global motion consistency.It can be used as a subsequent matching filter for the initial matching results generated by other matching algorithms based on the principle of motion smoothness.A particular matching algorithm can first be used to perform the initial matching;then,the rotation and movement information of the global feature vectors are combined to effectively identify outlier matches.The principle is that if the matching result is accurate,the feature vectors formed by any matched point should have similar rotation angles and moving distances.Thus,global motion direction and global motion distance consistencies were used to reject outliers caused by similar patterns in different locations.Results Four datasets were used to test the effectiveness of the proposed method.Three datasets with similar patterns in different locations were used to test the results for similar images that could easily be incorrectly matched by other algorithms,and one commonly used dataset was used to test the results for the general image-matching problem.The experimental results suggest that the proposed method is more accurate than other state-of-the-art algorithms in identifying mismatches in the initial matching set.Conclusions The proposed outlier rejection matching method can significantly improve the matching accuracy for similar images with locally similar feature pairs in different locations and can provide more accurate matching results for subsequent computer vision tasks.
文摘Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.
基金supported by the Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(No.kfjj20191506)。
文摘In view of the fact that the traditional Hausdorff image matching algorithm is very sensitive to the image size as well as the unsatisfactory real-time performance in practical applications,an image matching algorithm is proposed based on the combination of Yolov3.Firstly,the features of the reference image are selected for pretraining,and then the training results are used to extract the features of the real images before the coordinates of the center points of the feature area are used to complete the coarse matching.Finally,the Hausdorff algorithm is used to complete the fine image matching.Experiments show that the proposed algorithm significantly improves the speed and accuracy of image matching.Also,it is robust to rotation changes.
文摘A novel algorithm is presented to make the results of image matching more reliable and accurate based on SIFT (Scale Invariant Feature Transform). SIFT algorithm has been identified as the most resistant matching algorithm to common image deformations; however, if there are similar regions in images, SIFT algorithm still generates some analogical descriptors and provides many mismatches. This paper examines the local image descriptor used by SIFT and presents a new algorithm by integrating SIFT with two-dimensional moment invariants and disparity gradient to improve the matching results. In the new algorithm, decision tree is used, and the whole matching process is divided into three levels with different primitives. Matching points are considered as correct ones only when they satisfy all the three similarity measurements. Experiment results demonstrate that the new approach is more reliable and accurate.
文摘Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors.
基金supported by the National Natural Science Foundation of China(61271315)the State Scholarship Fund of China
文摘Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.
基金supported by the Fundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics (No.kfjj20191506)
文摘The scene matching navigation is a research focus in the field of autonomous navigation,but the real-time performance of image matching algorithm is difficult to meet the needs of real navigation systems.Therefore,this paper proposes a fast image matching algorithm.The algorithm improves the traditional line segment extraction algorithm and combines with the Delaunay triangulation method.By combining the geometric features of points and lines,the image feature redundancy is reduced.Then,the error with confidence criterion is analyzed and the matching process is completed.The simulation results show that the proposed algorithm can still work within 3°rotation and small scale variation.In addition,the matching time is less than 0.5 s when the image size is 256 pixel×256 pixel.The proposed algorithm is suitable for autonomous navigation systems with multiple feature distribution and higher real-time requirements.
文摘The paper analyze and improve the SIFT optimized algorithm, and proposes an image matching method for SIFT algorithm based on quasi Euclidean distance and KD-tree. Experiments show that this algorithm has matching more points, high matching accuracy, no repealed points and higher advantage of matching efficiency based on keeping the basic characteristics of SIFT algorithm unchanged, and provides precise matching point to generate precise image stitching and other related fields of the follow-up product. At the same time, this method was applied to the layout optimization and achieved good results.
基金This project is supported by National Natural Science Foundation of China(No.50475176) and Municipal Natural Science Foundation of Beijing(No.KZ200511232019).
文摘A coding-based method to solve the image matching problems in stereovision measurement is presented. The solution is to add and append an identity ID to the retro-reflect point, so it can be identified efficiently under the complicated circumstances and has the characteristics of rotation, zooming, and deformation independence. Its design architecture and implementation process in details based on the theory of stereovision measurement are described. The method is effective on reducing processing data time, improving accuracy of image matching and automation of measuring system through experiments.
基金Projects(2012AA010901,2012AA01A301)supported by National High Technology Research and Development Program of ChinaProjects(61272142,61103082,61003075,61170261,61103193)supported by the National Natural Science Foundation of ChinaProjects(B120601,CX2012A002)supported by Fund Sponsor Project of Excellent Postgraduate Student of NUDT,China
文摘Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.
文摘Object matching between two-dimensional images is an important problem in computer vision. The purpose of object matching is to decide the similarity between two objects. A new robust image matching method based on distance reciprocal was presented. The distance reciprocal is based on human visual perception. This method is simple and effective. Moreover, it is robust against noise. The experiments show that this method outperforms the Hausdorff distance, when the images with noise interfered need to be recognized.
文摘Presents a new parallel image matching algorithm based on the concept of entropy feature vector and suitable to SIMD computer, which, in comparison with other algorithms, has the following advantages:(1)The spatial information of an image is appropriately introduced into the definition of image entropy. (2) A large number of multiplication operations are eliminated, thus the algorithm is sped up. (3) The shortcoming of having to do global calculation in the first instance is overcome, and concludes the algorithm has very good locality and is suitable for parallel processing.
文摘In conventional image matching methods, the image matching process is mostly based on image statistic information. One aspect neglected by all these methods is that there is much fuzzy information contained in these images. A new fuzzy matching algorithm based on fuzzy similarity for navigation is presented in this paper. Because the fuzzy theory is of the ability of making good description of the fuzzy information contained in images, the image matching method based on fuzzy similarity would look forward to producing good performance results. Experimental results using matching algorithm based on fuzzy information also demonstrate its reliability and practicability.
基金supported by the National Natural Science Foundation of China,China(No.61801491)。
文摘Multi-modal image matching is crucial in aerospace applications because it can fully exploit the complementary and valuable information contained in the amount and diversity of remote sensing images.However,it remains a challenging task due to significant non-linear radiometric,geometric differences,and noise across different sensors.To improve the performance of heterologous image matching,this paper proposes a normalized self-similarity region descriptor to extract consistent structural information.We first construct the pointwise self-similarity region descriptor based on the Euclidean distance between adjacent image blocks to reflect the structural properties of multi-modal images.Then,a linear normalization approach is used to form Modality Independent Region Descriptor(MIRD),which can effectively distinguish structural features such as points,lines,corners,and flat between multi-modal images.To further improve the matching accuracy,the included angle cosine similarity metric is adopted to exploit the directional vector information of multi-dimensional feature descriptors.The experimental results show that the proposed MIRD has better matching accuracy and robustness for various multi-modal image matching than the state-of-the-art methods.MIRD can effectively extract consistent geometric structure features and suppress the influence of SAR speckle noise using non-local neighboring image blocks operation,effectively applied to various multi-modal image matching.
基金supported by the National Natural Science Foundation of China[Grant No.41771479]the National High-Resolution Earth Observation System(the Civil Part)[Grant No.50-H31D01-0508-13/15]the Japan Society for the Promotion of Science[Grant No.22H03573].
文摘Automatic Digital Orthophoto Map(DOM)generation plays an important role in many downstream works such as land use and cover detection,urban planning,and disaster assessment.Existing DOM generation methods can generate promising results but always need ground object filtered DEM generation before otho-rectification;this can consume much time and produce building facade contained results.To address this problem,a pixel-by-pixel digital differential rectification-based automatic DOM generation method is proposed in this paper.Firstly,3D point clouds with texture are generated by dense image matching based on an optical flow field for a stereo pair of images,respectively.Then,the grayscale of the digital differential rectification image is extracted directly from the point clouds element by element according to the nearest neighbor method for matched points.Subsequently,the elevation is repaired grid-by-grid using the multi-layer Locally Refined B-spline(LR-B)interpolation method with triangular mesh constraint for the point clouds void area,and the grayscale is obtained by the indirect scheme of digital differential rectification to generate the pixel-by-pixel digital differentially rectified image of a single image slice.Finally,a seamline network is automatically searched using a disparity map optimization algorithm,and DOM is smartly mosaicked.The qualitative and quantitative experimental results on three datasets were produced and evaluated,which confirmed the feasibility of the proposed method,and the DOM accuracy can reach 1 Ground Sample Distance(GSD)level.The comparison experiment with the state-of-the-art commercial softwares showed that the proposed method generated DOM has a better visual effect on building boundaries and roof completeness with comparable accuracy and computational efficiency.
基金Supported by the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.
基金The authors would like to thank NVIDIA Corp.for donating the GPU used in this research through its GPU grant program.The first author Lin Chen would also like to thank the China Scholarship Council(CSC)for financially supporting his PhD study.
文摘In feature based image matching,distinctive features in images are detected and represented by feature descriptors.Matching is then carried out by assessing the similarity of the descriptors of potentially conjugate points.In this paper,we first shortly discuss the general frame-work.Then,we review feature detection as well as the determination of affine shape and orientation of local features,before analyzing feature description in more detail.In the feature description review,the general framework of local feature description is presented first.Then,the review discusses the evolution from hand-crafted feature descriptors,e.g.SIFT(Scale Invariant Feature Transform),to machine learning and deep learning based descriptors.The machine learning models,the training loss and the respective training data of learning-based algorithms are looked at in more detail;subsequently the various advantages and challenges of the different approaches are discussed.Finally,we present and assess some current research directions before concluding the paper.
基金This work was supported by the National Key Research and Development Program of China[grant number 2017YFC0803802]and the National Natural Science Foundation of China[grant number 41771486].
文摘Targeting at a reliable image matching of multiple remote sensing images for the generation of digital surface models,this paper presents a geometric-constrained multi-view image matching method,based on an energy minimization framework.By employing a geometrical constraint,the cost value of the energy function was calculated from multiple images,and the cost value was aggregated in an image space using a semi-global optimization approach.A homography transform parameter calculation method is proposed for fast calculation of projection pixel on each image when calculation cost values.It is based on the known interior orientation parameters,exterior orientation parameters,and a given elevation value.For an efficient and reliable processing of multiple remote sensing images,the proposed matching method was performed via a coarse-to-fine strategy through image pyramid.Three sets of airborne remote sensing images were used to evaluate the performance of the proposed method.Results reveal that the multi-view image matching can improve matching reliability.Moreover,the experimental results show that the proposed method performs better than traditional methods.
文摘In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can be considered as an extention of regular grid point based matching. It avoids the shortcome of grid point based matching. For example, with this method, we can avoid low or even no texture area where errors frequently appear in cross correlaton matching. In the mean while, it makes full use of some mature techniques such as probability relaxation, image pyramid and the like which have already been successfully used in grid point matching process. Application of the technique to DEM generaton in different regions proved that it is more reasonable and reliable.
文摘Cross-correlation (CC) is the most time-consuming in the implementation of image matching algorithms based on the correlation method. Therefore, how to calculate CC fast is crucial to real-time image matching. This work reveals that the single cascading multiply-accumulate (CAMAC) and concurrent multiply-accumulate (COMAC) architectures which have been widely used in the past, actually, do not necessarily bring about a satisfactory time performance for CC. To obtain better time performance and higher resource efficiency, this paper proposes a configurable circuit involving the advantages of CAMAC and COMAC for a large amount of multiply-accumulate (MAC) operations of CC in exhaustive search. The proposed circuit works in an array manner and can better adapt to changing size image matching in real-time processing. Experimental results demonstrate that this novel circuit which involves the two structures can complete vast MAC calculations at a very high speed. Compared with existing related work, it improves the computation density further and is more flexible to use.