In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor anal...In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor analysis and locality preserving projection (LPP). LPDP can effectively use the speaker label information of speech data. Through optimization, LPDP can maintain the inherent manifold local structure of the speech data samples of the same speaker by reducing the distance between them. At the same time, LPDP can enhance the discriminability of the embedding space by expanding the distance between the speech data samples of different speakers. The proposed method is compared with LPP and total variability factor analysis on the NIST SRE 2010 telephone-telephone core condition. The experimental results indicate that the proposed LPDP can overcome the deficiency of LPP and total variability factor analysis and can further improve the system performance.展开更多
针对机械系统状态监测与故障诊断中存在的故障特征维数较高及模式识别导致的耗时较高问题,提出了一种基于自适应局部保持投影(Locality Preserving Projection,LPP)特征降维和改进多变量预测模型(Variable Predictive Model based Class...针对机械系统状态监测与故障诊断中存在的故障特征维数较高及模式识别导致的耗时较高问题,提出了一种基于自适应局部保持投影(Locality Preserving Projection,LPP)特征降维和改进多变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的故障诊断方法。首先,从滚动轴承振动信号中提取时频域特征、能量特征,以及复杂度特征组成高维故障特征数据集;其次,利用自适应LPP方法对高维故障特征数据集进行降维处理,得到低维敏感故障特征;最后,采用改进VPMCD方法对低维敏感故障特征进行分类识别,进而判断故障类型。通过滚动轴承故障诊断试验分析表明,自适应LPP方法克服了传统LPP方法需要人工选取参数的缺陷,在获得低维敏感故障特征的基础上具有较少计算时间,相比主成分分析(Principal Component Analysis,PCA)、局部切空间排列(Local Tangent Space Alignment,LTSA)、线性局部切空间排列(Linear Local Tangent Space Alignment,LLTSA)、等距特征映射(Isometric Mapping,Isomap),以及局部线性嵌入(Locally Linear Embedding,LLE)等算法具有明显的优势;改进VPMCD方法可克服人工选择模型的偶然性和片面性,在滚动轴承10种故障状态的识别中获得了99.4%的诊断精度,相比优化参数支持向量机方法提高了故障诊断效率,大大降低了识别时间,具有一定的优越性。展开更多
Space object recognition plays an important role in spatial exploitation and surveillance, followed by two main problems: lacking of data and drastic changes in viewpoints. In this article, firstly, we build a three-...Space object recognition plays an important role in spatial exploitation and surveillance, followed by two main problems: lacking of data and drastic changes in viewpoints. In this article, firstly, we build a three-dimensional (3D) satellites dataset named BUAA Satellite Image Dataset (BUAA-SID 1.0) to supply data for 3D space object research. Then, based on the dataset, we propose to recognize full-viewpoint 3D space objects based on kernel locality preserving projections (KLPP). To obtain more accurate and separable description of the objects, firstly, we build feature vectors employing moment invariants, Fourier descriptors, region covariance and histogram of oriented gradients. Then, we map the features into kernel space followed by dimensionality reduction using KLPP to obtain the submanifold of the features. At last, k-nearest neighbor (kNN) is used to accomplish the classification. Experimental results show that the proposed approach is more appropriate for space object recognition mainly considering changes of viewpoints. Encouraging recognition rate could be obtained based on images in BUAA-SID 1.0, and the highest recognition result could achieve 95.87%.展开更多
文摘In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor analysis and locality preserving projection (LPP). LPDP can effectively use the speaker label information of speech data. Through optimization, LPDP can maintain the inherent manifold local structure of the speech data samples of the same speaker by reducing the distance between them. At the same time, LPDP can enhance the discriminability of the embedding space by expanding the distance between the speech data samples of different speakers. The proposed method is compared with LPP and total variability factor analysis on the NIST SRE 2010 telephone-telephone core condition. The experimental results indicate that the proposed LPDP can overcome the deficiency of LPP and total variability factor analysis and can further improve the system performance.
文摘针对机械系统状态监测与故障诊断中存在的故障特征维数较高及模式识别导致的耗时较高问题,提出了一种基于自适应局部保持投影(Locality Preserving Projection,LPP)特征降维和改进多变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的故障诊断方法。首先,从滚动轴承振动信号中提取时频域特征、能量特征,以及复杂度特征组成高维故障特征数据集;其次,利用自适应LPP方法对高维故障特征数据集进行降维处理,得到低维敏感故障特征;最后,采用改进VPMCD方法对低维敏感故障特征进行分类识别,进而判断故障类型。通过滚动轴承故障诊断试验分析表明,自适应LPP方法克服了传统LPP方法需要人工选取参数的缺陷,在获得低维敏感故障特征的基础上具有较少计算时间,相比主成分分析(Principal Component Analysis,PCA)、局部切空间排列(Local Tangent Space Alignment,LTSA)、线性局部切空间排列(Linear Local Tangent Space Alignment,LLTSA)、等距特征映射(Isometric Mapping,Isomap),以及局部线性嵌入(Locally Linear Embedding,LLE)等算法具有明显的优势;改进VPMCD方法可克服人工选择模型的偶然性和片面性,在滚动轴承10种故障状态的识别中获得了99.4%的诊断精度,相比优化参数支持向量机方法提高了故障诊断效率,大大降低了识别时间,具有一定的优越性。
基金National Natural Science Foundation of China (60776793,60802043)National Basic Research Program of China (2010CB327900)
文摘Space object recognition plays an important role in spatial exploitation and surveillance, followed by two main problems: lacking of data and drastic changes in viewpoints. In this article, firstly, we build a three-dimensional (3D) satellites dataset named BUAA Satellite Image Dataset (BUAA-SID 1.0) to supply data for 3D space object research. Then, based on the dataset, we propose to recognize full-viewpoint 3D space objects based on kernel locality preserving projections (KLPP). To obtain more accurate and separable description of the objects, firstly, we build feature vectors employing moment invariants, Fourier descriptors, region covariance and histogram of oriented gradients. Then, we map the features into kernel space followed by dimensionality reduction using KLPP to obtain the submanifold of the features. At last, k-nearest neighbor (kNN) is used to accomplish the classification. Experimental results show that the proposed approach is more appropriate for space object recognition mainly considering changes of viewpoints. Encouraging recognition rate could be obtained based on images in BUAA-SID 1.0, and the highest recognition result could achieve 95.87%.