This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this nee...This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this need, this paper describes an FPGA-based high-speed image processing module with both hardware and software aspects. Improving these two aspects together will help the system achieve real-time processing of massive image data, and simplifies the architecture of the strip surface quality on-line inspection system.展开更多
In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP...In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP acts as the main processor of the system: executes digital image processing algorithms and operates other devices such as image sensor and CPLD. The CPLD is used to acquire images and achieve complex logic control of the whole system. Some key technologies are introduced to enhance the performance of our system. In particular, the use of DSP/BIOS tool to develop DSP applications makes our program run much more efficiently. As a result, this system can provide an excellent computing platform not only for executing complex image processing algorithms, but also for other digital signal processing or multi-channel data collection by choosing different sensors or Analog-to-Digital (A/D) converters.展开更多
Up to now the imported commercial scanning probe microscope(SPM) has not an automatic error correcting and reducing system.In this paper a software system is presented to solve this problem.This software system gives ...Up to now the imported commercial scanning probe microscope(SPM) has not an automatic error correcting and reducing system.In this paper a software system is presented to solve this problem.This software system gives the average distance between the centers of mass of two adjacent atoms on the same horizontal line and its mean square root as well as the atoms shape and center of mass by filtering the measured image of a standard sample-highly oriented pyrolysis graphite(HOPG).This system forms the basis of SPMs automatic measurement error correcting.展开更多
The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a...The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.展开更多
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri...Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.展开更多
The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of ...The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of the IoMT,particularly in the context of knowledge‐based learning systems.Smart healthcare systems leverage knowledge‐based learning to become more context‐aware,adaptable,and auditable while maintain-ing the ability to learn from historical data.In smart healthcare systems,devices capture images,such as X‐rays,Magnetic Resonance Imaging.The security and integrity of these images are crucial for the databases used in knowledge‐based learning systems to foster structured decision‐making and enhance the learning abilities of AI.Moreover,in knowledge‐driven systems,the storage and transmission of HD medical images exert a burden on the limited bandwidth of the communication channel,leading to data trans-mission delays.To address the security and latency concerns,this paper presents a lightweight medical image encryption scheme utilising bit‐plane decomposition and chaos theory.The results of the experiment yield entropy,energy,and correlation values of 7.999,0.0156,and 0.0001,respectively.This validates the effectiveness of the encryption system proposed in this paper,which offers high‐quality encryption,a large key space,key sensitivity,and resistance to statistical attacks.展开更多
A new surface inspection system for cold rolled strips based on image processing is introduced. The system is equipped withtwo different illumination structures and CCD matrix cameras. The structure and image processi...A new surface inspection system for cold rolled strips based on image processing is introduced. The system is equipped withtwo different illumination structures and CCD matrix cameras. The structure and image processing of the inspection system are described. Some efficient algorithms for image processing and classification are presented. The system is tested with strip samples fromcold rolling plants. The results show that the system can detect and recognize six common defects of cold rolled strips successfully.展开更多
The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its...The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its excellent performance in computer vision, deep learning has been applied to UAV inspection image processing tasks such as power line identification and insulator defect detection. Despite their excellent performance, electric power UAV inspection image processing models based on deep learning face several problems such as a small application scope, the need for constant retraining and optimization, and high R&D monetary and time costs due to the black-box and scene data-driven characteristics of deep learning. In this study, an automated deep learning system for electric power UAV inspection image analysis and processing is proposed as a solution to the aforementioned problems. This system design is based on the three critical design principles of generalizability, extensibility, and automation. Pre-trained models, fine-tuning (downstream task adaptation), and automated machine learning, which are closely related to these design principles, are reviewed. In addition, an automated deep learning system architecture for electric power UAV inspection image analysis and processing is presented. A prototype system was constructed and experiments were conducted on the two electric power UAV inspection image analysis and processing tasks of insulator self-detonation and bird nest recognition. The models constructed using the prototype system achieved 91.36% and 86.13% mAP for insulator self-detonation and bird nest recognition, respectively. This demonstrates that the system design concept is reasonable and the system architecture feasible .展开更多
To improve image processing speed and detection precision of a surface detection system on a strip surface,based on the analysis of the characteristics of image data and image processing in detection system on the str...To improve image processing speed and detection precision of a surface detection system on a strip surface,based on the analysis of the characteristics of image data and image processing in detection system on the strip surface,the design of parallel image processing system and the methods of algorithm implementation have been studied. By using field programmable gate array(FPGA) as hardware platform of implementation and considering the characteristic of detection system on the strip surface,a parallel image processing system implemented by using multi IP kernel is designed. According to different computing tasks and the load balancing capability of parallel processing system,the system could set different calculating numbers of nodes to meet the system's demand and save the hardware cost.展开更多
Hyperspectral remote sensing is becoming more and more important amongst remote sensing techniques. In this paper, we present a hyperspectral database(Hyper DB) designed to cooperate with an embedded hyperspectral i...Hyperspectral remote sensing is becoming more and more important amongst remote sensing techniques. In this paper, we present a hyperspectral database(Hyper DB) designed to cooperate with an embedded hyperspectral image processing system developed by the authors. Hyperspectral data are recognized and categorized by their land coverage class and band information, and can be imported from various sources such as airborne and spaceborne sensors carried by airplanes or satellites, as well as handhold instruments based on in situ ground observations. Spectral library files can be easily stored, indexed, viewed, and exported. Since Hyper DB follows standard design principles—independence, data safety, and compatibility—it satisfies the practical demand for managing categorized hyperspectral data, and can be readily expanded to other peripheral applications.展开更多
Seam image processing is the basis of the realization of automatic laser vision seam tracking system, and it has become one of the important research directions. Adding windows processing, gray processing, fast median...Seam image processing is the basis of the realization of automatic laser vision seam tracking system, and it has become one of the important research directions. Adding windows processing, gray processing, fast median filtering, binary processing and image edge extraction are used to pretreat the seam image. In the post-processing of seam image, the feature points of the target image are succesfully detected by using center line extraction and feature points detection algorithm based on slope analysis. The whole processing time is less than 150 ms, and the real-time processing of seam image can be implemented.展开更多
Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettin...Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettings,angle detection remains an underexplored domain,with limited integration into production lines.Thispaper addresses the need for automated angle detection in industrial environments by presenting a methodologythat eliminates training time and higher computation cost on Graphics Processing Unit(GPU)from machinelearning in computer vision(e.g.,Convolutional Neural Networks(CNN)).Our approach leverages advanced imageprocessing techniques and a strategic combination of algorithms,including contour selection,circle regression,polar warp transformation,and outlier detection,to provide an adaptive solution for angle detection.By configuringthe algorithm with a diverse dataset and evaluating its performance across various objects,we demonstrate itsefficacy in achieving reliable results,with an average error of only 0.5 degrees.Notably,this error margin is 3.274times lower than the acceptable threshold.Our study highlights the importance of accurate angle detection inindustrial settings and showcases the reliability of our algorithm in accurately determining angles,thus contributingto improved manufacturing processes.展开更多
Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights t...Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights the importance of addressing race conditions in parallel image processing, specifically focusing on color inverse filtering using OpenMP. We considered three solutions to solve race conditions, each with distinct characteristics: #pragma omp atomic: Protects individual memory operations for fine-grained control. #pragma omp critical: Protects entire code blocks for exclusive access. #pragma omp parallel sections reduction: Employs a reduction clause for safe aggregation of values across threads. Our findings show that the produced images were unaffected by race condition. However, it becomes evident that solving the race conditions in the code makes it significantly faster, especially when it is executed on multiple cores.展开更多
In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularl...In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.展开更多
In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance syst...In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance system for snowplows, which intends to detect and estimate the distance of trailing vehicles. Due to the operational conditions of snowplows, which include heavy-blowing snow, traditional optical sensors like LiDAR and visible spectrum cameras have reduced effectiveness in detecting objects in such environments. Thus, we propose using a thermal infrared camera as the primary sensor along with machine learning algorithms. First, we curate a large dataset of thermal images of vehicles in heavy snow conditions. Using the curated dataset, two machine-learning models based on the modified ResNet architectures were trained to detect and estimate the trailing vehicle distance using real-time thermal images. The trained detection network was capable of detecting trailing vehicles 99.0% of the time at 1500.0 ft distance from the snowplow. The trained trailing distance network was capable of estimating distance with an average estimation error of 10.70 ft. The inference performance of the trained models is discussed, along with the interpretation of the performance.展开更多
The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In orde...The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In order to solve this problem, a preprocessing method for the rail surface state image is proposed. The preprocessing process mainly includes image graying, image denoising, image geometric correction, image extraction, data amplification, and finally building the rail surface image database. The experimental results show that this method can efficiently complete image processing, facilitate feature extraction of rail surface status images, and improve rail surface status recognition accuracy.展开更多
The network infrastructure has evolved rapidly due to the everincreasing volume of users and data.The massive number of online devices and users has forced the network to transform and facilitate the operational neces...The network infrastructure has evolved rapidly due to the everincreasing volume of users and data.The massive number of online devices and users has forced the network to transform and facilitate the operational necessities of consumers.Among these necessities,network security is of prime significance.Network intrusion detection systems(NIDS)are among the most suitable approaches to detect anomalies and assaults on a network.However,keeping up with the network security requirements is quite challenging due to the constant mutation in attack patterns by the intruders.This paper presents an effective and prevalent framework for NIDS by merging image processing with convolution neural networks(CNN).The proposed framework first converts non-image data from network traffic into images and then further enhances those images by using the Gabor filter.The images are then classified using a CNN classifier.To assess the efficacy of the recommended method,four benchmark datasets i.e.,CSE-CIC-IDS2018,CIC-IDS-2017,ISCX-IDS 2012,and NSL-KDD were used.The proposed approach showed higher precision in contrast with the recent work on the mentioned datasets.Further,the proposed method is compared with the recent well-known image processing methods for NIDS.展开更多
A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-B...A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.展开更多
In the period of Industries 4.0,cyber-physical systems(CPSs)were a major study area.Such systems frequently occur in manufacturing processes and people’s everyday lives,and they communicate intensely among physical e...In the period of Industries 4.0,cyber-physical systems(CPSs)were a major study area.Such systems frequently occur in manufacturing processes and people’s everyday lives,and they communicate intensely among physical elements and lead to inconsistency.Due to the magnitude and importance of the systems they support,the cyber quantum models must function effectively.In this paper,an image-processing-based anomalous mobility detecting approach is suggested that may be added to systems at any time.The expense of glitches,failures or destroyed products is decreased when anomalous activities are detected and unplanned scenarios are avoided.The presently offered techniques are not well suited to these operations,which necessitate information systems for issue treatment and classification at a degree of complexity that is distinct from technology.To overcome such challenges in industrial cyber-physical systems,the Image Processing aided Computer Vision Technology for Fault Detection System(IM-CVFD)is proposed in this research.The Uncertainty Management technique is introduced in addition to achieving optimum knowledge in terms of latency and effectiveness.A thorough simulation was performed in an appropriate processing facility.The study results suggest that the IM-CVFD has a high performance,low error frequency,low energy consumption,and low delay with a strategy that provides.In comparison to traditional approaches,the IM-CVFD produces a more efficient outcome.展开更多
This project is mainly focused to develop system for animal researchers & wild life photographers to overcome so many challenges in their day life today. When they engage in such situation, they need to be patient...This project is mainly focused to develop system for animal researchers & wild life photographers to overcome so many challenges in their day life today. When they engage in such situation, they need to be patiently waiting for long hours, maybe several days in whatever location and under severe weather conditions until capturing what they are interested in. Also there is a big demand for rare wild life photo graphs. The proposed method makes the task automatically use microcontroller controlled camera, image processing and machine learning techniques. First with the aid of microcontroller and four passive IR sensors system will automatically detect the presence of animal and rotate the camera toward that direction. Then the motion detection algorithm will get the animal into middle of the frame and capture by high end auto focus web cam. Then the captured images send to the PC and are compared with photograph database to check whether the animal is exactly the same as the photographer choice. If that captured animal is the exactly one who need to capture then it will automatically capture more. Though there are several technologies available none of these are capable of recognizing what it captures. There is no detection of animal presence in different angles. Most of available equipment uses a set of PIR sensors and whatever it disturbs the IR field will automatically be captured and stored. Night time images are black and white and have less details and clarity due to infrared flash quality. If the infrared flash is designed for best image quality, range will be sacrificed. The photographer might be interested in a specific animal but there is no facility to recognize automatically whether captured animal is the photographer’s choice or not.展开更多
文摘This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this need, this paper describes an FPGA-based high-speed image processing module with both hardware and software aspects. Improving these two aspects together will help the system achieve real-time processing of massive image data, and simplifies the architecture of the strip surface quality on-line inspection system.
基金Supported by the National Natural Science Foundation of China (No.60472046)
文摘In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP acts as the main processor of the system: executes digital image processing algorithms and operates other devices such as image sensor and CPLD. The CPLD is used to acquire images and achieve complex logic control of the whole system. Some key technologies are introduced to enhance the performance of our system. In particular, the use of DSP/BIOS tool to develop DSP applications makes our program run much more efficiently. As a result, this system can provide an excellent computing platform not only for executing complex image processing algorithms, but also for other digital signal processing or multi-channel data collection by choosing different sensors or Analog-to-Digital (A/D) converters.
文摘Up to now the imported commercial scanning probe microscope(SPM) has not an automatic error correcting and reducing system.In this paper a software system is presented to solve this problem.This software system gives the average distance between the centers of mass of two adjacent atoms on the same horizontal line and its mean square root as well as the atoms shape and center of mass by filtering the measured image of a standard sample-highly oriented pyrolysis graphite(HOPG).This system forms the basis of SPMs automatic measurement error correcting.
基金supported by the National Science Foundation of China(10972015,11172015)the Beijing Natural Science Foundation(8162008).
文摘The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.
基金funded by the National Natural Science Foundation of China(NSFC,Nos.12373086 and 12303082)CAS“Light of West China”Program+2 种基金Yunnan Revitalization Talent Support Program in Yunnan ProvinceNational Key R&D Program of ChinaGravitational Wave Detection Project No.2022YFC2203800。
文摘Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.
文摘The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of the IoMT,particularly in the context of knowledge‐based learning systems.Smart healthcare systems leverage knowledge‐based learning to become more context‐aware,adaptable,and auditable while maintain-ing the ability to learn from historical data.In smart healthcare systems,devices capture images,such as X‐rays,Magnetic Resonance Imaging.The security and integrity of these images are crucial for the databases used in knowledge‐based learning systems to foster structured decision‐making and enhance the learning abilities of AI.Moreover,in knowledge‐driven systems,the storage and transmission of HD medical images exert a burden on the limited bandwidth of the communication channel,leading to data trans-mission delays.To address the security and latency concerns,this paper presents a lightweight medical image encryption scheme utilising bit‐plane decomposition and chaos theory.The results of the experiment yield entropy,energy,and correlation values of 7.999,0.0156,and 0.0001,respectively.This validates the effectiveness of the encryption system proposed in this paper,which offers high‐quality encryption,a large key space,key sensitivity,and resistance to statistical attacks.
文摘A new surface inspection system for cold rolled strips based on image processing is introduced. The system is equipped withtwo different illumination structures and CCD matrix cameras. The structure and image processing of the inspection system are described. Some efficient algorithms for image processing and classification are presented. The system is tested with strip samples fromcold rolling plants. The results show that the system can detect and recognize six common defects of cold rolled strips successfully.
基金This work was supported by Science and Technology Project of State Grid Corporation“Research on Key Technologies of Power Artificial Intelligence Open Platform”(5700-202155260A-0-0-00).
文摘The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its excellent performance in computer vision, deep learning has been applied to UAV inspection image processing tasks such as power line identification and insulator defect detection. Despite their excellent performance, electric power UAV inspection image processing models based on deep learning face several problems such as a small application scope, the need for constant retraining and optimization, and high R&D monetary and time costs due to the black-box and scene data-driven characteristics of deep learning. In this study, an automated deep learning system for electric power UAV inspection image analysis and processing is proposed as a solution to the aforementioned problems. This system design is based on the three critical design principles of generalizability, extensibility, and automation. Pre-trained models, fine-tuning (downstream task adaptation), and automated machine learning, which are closely related to these design principles, are reviewed. In addition, an automated deep learning system architecture for electric power UAV inspection image analysis and processing is presented. A prototype system was constructed and experiments were conducted on the two electric power UAV inspection image analysis and processing tasks of insulator self-detonation and bird nest recognition. The models constructed using the prototype system achieved 91.36% and 86.13% mAP for insulator self-detonation and bird nest recognition, respectively. This demonstrates that the system design concept is reasonable and the system architecture feasible .
基金The 111 project(B07018) Supported by Program for Changjiang Scholars and Innovative Research Teamin University(IRT0423)
文摘To improve image processing speed and detection precision of a surface detection system on a strip surface,based on the analysis of the characteristics of image data and image processing in detection system on the strip surface,the design of parallel image processing system and the methods of algorithm implementation have been studied. By using field programmable gate array(FPGA) as hardware platform of implementation and considering the characteristic of detection system on the strip surface,a parallel image processing system implemented by using multi IP kernel is designed. According to different computing tasks and the load balancing capability of parallel processing system,the system could set different calculating numbers of nodes to meet the system's demand and save the hardware cost.
文摘Hyperspectral remote sensing is becoming more and more important amongst remote sensing techniques. In this paper, we present a hyperspectral database(Hyper DB) designed to cooperate with an embedded hyperspectral image processing system developed by the authors. Hyperspectral data are recognized and categorized by their land coverage class and band information, and can be imported from various sources such as airborne and spaceborne sensors carried by airplanes or satellites, as well as handhold instruments based on in situ ground observations. Spectral library files can be easily stored, indexed, viewed, and exported. Since Hyper DB follows standard design principles—independence, data safety, and compatibility—it satisfies the practical demand for managing categorized hyperspectral data, and can be readily expanded to other peripheral applications.
基金The work was supported by National Natural Science Foundation of China (No. 50975195).
文摘Seam image processing is the basis of the realization of automatic laser vision seam tracking system, and it has become one of the important research directions. Adding windows processing, gray processing, fast median filtering, binary processing and image edge extraction are used to pretreat the seam image. In the post-processing of seam image, the feature points of the target image are succesfully detected by using center line extraction and feature points detection algorithm based on slope analysis. The whole processing time is less than 150 ms, and the real-time processing of seam image can be implemented.
文摘Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettings,angle detection remains an underexplored domain,with limited integration into production lines.Thispaper addresses the need for automated angle detection in industrial environments by presenting a methodologythat eliminates training time and higher computation cost on Graphics Processing Unit(GPU)from machinelearning in computer vision(e.g.,Convolutional Neural Networks(CNN)).Our approach leverages advanced imageprocessing techniques and a strategic combination of algorithms,including contour selection,circle regression,polar warp transformation,and outlier detection,to provide an adaptive solution for angle detection.By configuringthe algorithm with a diverse dataset and evaluating its performance across various objects,we demonstrate itsefficacy in achieving reliable results,with an average error of only 0.5 degrees.Notably,this error margin is 3.274times lower than the acceptable threshold.Our study highlights the importance of accurate angle detection inindustrial settings and showcases the reliability of our algorithm in accurately determining angles,thus contributingto improved manufacturing processes.
文摘Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights the importance of addressing race conditions in parallel image processing, specifically focusing on color inverse filtering using OpenMP. We considered three solutions to solve race conditions, each with distinct characteristics: #pragma omp atomic: Protects individual memory operations for fine-grained control. #pragma omp critical: Protects entire code blocks for exclusive access. #pragma omp parallel sections reduction: Employs a reduction clause for safe aggregation of values across threads. Our findings show that the produced images were unaffected by race condition. However, it becomes evident that solving the race conditions in the code makes it significantly faster, especially when it is executed on multiple cores.
文摘In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.
文摘In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance system for snowplows, which intends to detect and estimate the distance of trailing vehicles. Due to the operational conditions of snowplows, which include heavy-blowing snow, traditional optical sensors like LiDAR and visible spectrum cameras have reduced effectiveness in detecting objects in such environments. Thus, we propose using a thermal infrared camera as the primary sensor along with machine learning algorithms. First, we curate a large dataset of thermal images of vehicles in heavy snow conditions. Using the curated dataset, two machine-learning models based on the modified ResNet architectures were trained to detect and estimate the trailing vehicle distance using real-time thermal images. The trained detection network was capable of detecting trailing vehicles 99.0% of the time at 1500.0 ft distance from the snowplow. The trained trailing distance network was capable of estimating distance with an average estimation error of 10.70 ft. The inference performance of the trained models is discussed, along with the interpretation of the performance.
文摘The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In order to solve this problem, a preprocessing method for the rail surface state image is proposed. The preprocessing process mainly includes image graying, image denoising, image geometric correction, image extraction, data amplification, and finally building the rail surface image database. The experimental results show that this method can efficiently complete image processing, facilitate feature extraction of rail surface status images, and improve rail surface status recognition accuracy.
基金This work was supported by the National Research Foundation of Korea(NRF)NRF-2022R1A2C1011774.
文摘The network infrastructure has evolved rapidly due to the everincreasing volume of users and data.The massive number of online devices and users has forced the network to transform and facilitate the operational necessities of consumers.Among these necessities,network security is of prime significance.Network intrusion detection systems(NIDS)are among the most suitable approaches to detect anomalies and assaults on a network.However,keeping up with the network security requirements is quite challenging due to the constant mutation in attack patterns by the intruders.This paper presents an effective and prevalent framework for NIDS by merging image processing with convolution neural networks(CNN).The proposed framework first converts non-image data from network traffic into images and then further enhances those images by using the Gabor filter.The images are then classified using a CNN classifier.To assess the efficacy of the recommended method,four benchmark datasets i.e.,CSE-CIC-IDS2018,CIC-IDS-2017,ISCX-IDS 2012,and NSL-KDD were used.The proposed approach showed higher precision in contrast with the recent work on the mentioned datasets.Further,the proposed method is compared with the recent well-known image processing methods for NIDS.
基金This project was supported by the National Natural Science Foundation of China(60135020) National Key Pre-researchProject of China(413010701 -3) .
文摘A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.
文摘In the period of Industries 4.0,cyber-physical systems(CPSs)were a major study area.Such systems frequently occur in manufacturing processes and people’s everyday lives,and they communicate intensely among physical elements and lead to inconsistency.Due to the magnitude and importance of the systems they support,the cyber quantum models must function effectively.In this paper,an image-processing-based anomalous mobility detecting approach is suggested that may be added to systems at any time.The expense of glitches,failures or destroyed products is decreased when anomalous activities are detected and unplanned scenarios are avoided.The presently offered techniques are not well suited to these operations,which necessitate information systems for issue treatment and classification at a degree of complexity that is distinct from technology.To overcome such challenges in industrial cyber-physical systems,the Image Processing aided Computer Vision Technology for Fault Detection System(IM-CVFD)is proposed in this research.The Uncertainty Management technique is introduced in addition to achieving optimum knowledge in terms of latency and effectiveness.A thorough simulation was performed in an appropriate processing facility.The study results suggest that the IM-CVFD has a high performance,low error frequency,low energy consumption,and low delay with a strategy that provides.In comparison to traditional approaches,the IM-CVFD produces a more efficient outcome.
文摘This project is mainly focused to develop system for animal researchers & wild life photographers to overcome so many challenges in their day life today. When they engage in such situation, they need to be patiently waiting for long hours, maybe several days in whatever location and under severe weather conditions until capturing what they are interested in. Also there is a big demand for rare wild life photo graphs. The proposed method makes the task automatically use microcontroller controlled camera, image processing and machine learning techniques. First with the aid of microcontroller and four passive IR sensors system will automatically detect the presence of animal and rotate the camera toward that direction. Then the motion detection algorithm will get the animal into middle of the frame and capture by high end auto focus web cam. Then the captured images send to the PC and are compared with photograph database to check whether the animal is exactly the same as the photographer choice. If that captured animal is the exactly one who need to capture then it will automatically capture more. Though there are several technologies available none of these are capable of recognizing what it captures. There is no detection of animal presence in different angles. Most of available equipment uses a set of PIR sensors and whatever it disturbs the IR field will automatically be captured and stored. Night time images are black and white and have less details and clarity due to infrared flash quality. If the infrared flash is designed for best image quality, range will be sacrificed. The photographer might be interested in a specific animal but there is no facility to recognize automatically whether captured animal is the photographer’s choice or not.