期刊文献+
共找到35,564篇文章
< 1 2 250 >
每页显示 20 50 100
Precise region semantics-assisted GAN for pose-guided person image generation
1
作者 Ji Liu Zhenyu Weng Yuesheng Zhu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期665-678,共14页
Generating a realistic person's image from one source pose conditioned on another different target pose is a promising computer vision task.The previous mainstream methods mainly focus on exploring the transformat... Generating a realistic person's image from one source pose conditioned on another different target pose is a promising computer vision task.The previous mainstream methods mainly focus on exploring the transformation relationship between the keypoint-based source pose and the target pose,but rarely investigate the region-based human semantic information.Some current methods that adopt the parsing map neither consider the precise local pose-semantic matching issues nor the correspondence between two different poses.In this study,a Region Semantics-Assisted Generative Adversarial Network(RSA-GAN)is proposed for the pose-guided person image gen-eration task.In particular,a regional pose-guided semantic fusion module is first devel-oped to solve the imprecise match issue between the semantic parsing map from a certain source image and the corresponding keypoints in the source pose.To well align the style of the human in the source image with the target pose,a pose correspondence guided style injection module is designed to learn the correspondence between the source pose and the target pose.In addition,one gated depth-wise convolutional cross-attention based style integration module is proposed to distribute the well-aligned coarse style information together with the precisely matched pose-guided semantic information to-wards the target pose.The experimental results indicate that the proposed RSA-GAN achieves a 23%reduction in LPIPS compared to the method without using the seman-tic maps and a 6.9%reduction in FID for the method with semantic maps,respectively,and also shows higher realistic qualitative results. 展开更多
关键词 deep learning image processing
下载PDF
Integer multiple quantum image scaling based on NEQR and bicubic interpolation
2
作者 蔡硕 周日贵 +1 位作者 罗佳 陈思哲 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期259-273,共15页
As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolatio... As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolation,the quantum version of bicubic interpolation has not yet been studied.In this work,we present the first quantum image scaling scheme for bicubic interpolation based on the novel enhanced quantum representation(NEQR).Our scheme can realize synchronous enlargement and reduction of the image with the size of 2^(n)×2^(n) by integral multiple.Firstly,the image is represented by NEQR and the original image coordinates are obtained through multiple CNOT modules.Then,16 neighborhood pixels are obtained by quantum operation circuits,and the corresponding weights of these pixels are calculated by quantum arithmetic modules.Finally,a quantum matrix operation,instead of a classical convolution operation,is used to realize the sum of convolution of these pixels.Through simulation experiments and complexity analysis,we demonstrate that our scheme achieves exponential speedup over the classical bicubic interpolation algorithm,and has better effect than the quantum version of bilinear interpolation. 展开更多
关键词 quantum image processing image scaling bicubic interpolation quantum circuit
下载PDF
Underwater image clarifying based on human visual colour constancy using double-opponency
3
作者 Bin Kong Jing Qian +2 位作者 Pinhao Song Jing Yang Amir Hussain 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期632-648,共17页
Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater ope... Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater operations.The main problem in classic underwater image restoration or enhancement methods is that they consume long calcu-lation time,and often,the colour or contrast of the result images is still unsatisfied.Instead of using the complicated physical model of underwater imaging degradation,we propose a new method to deal with underwater images by imitating the colour constancy mechanism of human vision using double-opponency.Firstly,the original image is converted to the LMS space.Then the signals are linearly combined,and Gaussian convolutions are per-formed to imitate the function of receptive fields(RFs).Next,two RFs with different sizes work together to constitute the double-opponency response.Finally,the underwater light is estimated to correct the colours in the image.Further contrast stretching on the luminance is optional.Experiments show that the proposed method can obtain clarified underwater images with higher quality than before,and it spends significantly less time cost compared to other previously published typical methods. 展开更多
关键词 computerS computer vision image processing image reconstruction
下载PDF
Image enhancement with intensity transformation on embedding space
4
作者 Hanul Kim Yeji Jeon Yeong Jun Koh 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期101-115,共15页
In recent times,an image enhancement approach,which learns the global transformation function using deep neural networks,has gained attention.However,many existing methods based on this approach have a limitation:thei... In recent times,an image enhancement approach,which learns the global transformation function using deep neural networks,has gained attention.However,many existing methods based on this approach have a limitation:their transformation functions are too simple to imitate complex colour transformations between low-quality images and manually retouched high-quality images.In order to address this limitation,a simple yet effective approach for image enhancement is proposed.The proposed algorithm based on the channel-wise intensity transformation is designed.However,this transformation is applied to the learnt embedding space instead of specific colour spaces and then return enhanced features to colours.To this end,the authors define the continuous intensity transformation(CIT)to describe the mapping between input and output intensities on the embedding space.Then,the enhancement network is developed,which produces multi-scale feature maps from input images,derives the set of transformation functions,and performs the CIT to obtain enhanced images.Extensive experiments on the MIT-Adobe 5K dataset demonstrate that the authors’approach improves the performance of conventional intensity transforms on colour space metrics.Specifically,the authors achieved a 3.8%improvement in peak signal-to-noise ratio,a 1.8%improvement in structual similarity index measure,and a 27.5%improvement in learned perceptual image patch similarity.Also,the authors’algorithm outperforms state-of-the-art alternatives on three image enhancement datasets:MIT-Adobe 5K,Low-Light,and Google HDRþ. 展开更多
关键词 computer vision deep learning image enhancement image processing
下载PDF
Multi-scale cross-domain alignment for person image generation
5
作者 Liyuan Ma Tingwei Gao +1 位作者 Haibin Shen Kejie Huang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期374-387,共14页
Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of app... Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of appearance domain and pose domain.Previous alignment methods,such as appearance flow warping,correspondence learning and cross attention,often encounter challenges when it comes to producing fine texture details.These approaches suffer from limitations in accurately estimating appearance flows due to the lack of global receptive field.Alternatively,they can only perform cross-domain alignment on high-level feature maps with small spatial dimensions since the computational complexity increases quadratically with larger feature sizes.In this article,the significance of multi-scale alignment,in both low-level and high-level domains,for ensuring reliable cross-domain alignment of appearance and pose is demonstrated.To this end,a novel and effective method,named Multi-scale Crossdomain Alignment(MCA)is proposed.Firstly,MCA adopts global context aggregation transformer to model multi-scale interaction between pose and appearance inputs,which employs pair-wise window-based cross attention.Furthermore,leveraging the integrated global source information for each target position,MCA applies flexible flow prediction head and point correlation to effectively conduct warping and fusing for final transformed person image generation.Our proposed MCA achieves superior performance on two popular datasets than other methods,which verifies the effectiveness of our approach. 展开更多
关键词 artificial intelligence image processing image reconstruction
下载PDF
RGB-guided hyperspectral image super-resolution with deep progressive learning
6
作者 Tao Zhang Ying Fu +3 位作者 Liwei Huang Siyuan Li Shaodi You Chenggang Yan 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期679-694,共16页
Due to hardware limitations,existing hyperspectral(HS)camera often suffer from low spatial/temporal resolution.Recently,it has been prevalent to super-resolve a low reso-lution(LR)HS image into a high resolution(HR)HS... Due to hardware limitations,existing hyperspectral(HS)camera often suffer from low spatial/temporal resolution.Recently,it has been prevalent to super-resolve a low reso-lution(LR)HS image into a high resolution(HR)HS image with a HR RGB(or mul-tispectral)image guidance.Previous approaches for this guided super-resolution task often model the intrinsic characteristic of the desired HR HS image using hand-crafted priors.Recently,researchers pay more attention to deep learning methods with direct supervised or unsupervised learning,which exploit deep prior only from training dataset or testing data.In this article,an efficient convolutional neural network-based method is presented to progressively super-resolve HS image with RGB image guidance.Specif-ically,a progressive HS image super-resolution network is proposed,which progressively super-resolve the LR HS image with pixel shuffled HR RGB image guidance.Then,the super-resolution network is progressively trained with supervised pre-training and un-supervised adaption,where supervised pre-training learns the general prior on training data and unsupervised adaptation generalises the general prior to specific prior for variant testing scenes.The proposed method can effectively exploit prior from training dataset and testing HS and RGB images with spectral-spatial constraint.It has a good general-isation capability,especially for blind HS image super-resolution.Comprehensive experimental results show that the proposed deep progressive learning method out-performs the existing state-of-the-art methods for HS image super-resolution in non-blind and blind cases. 展开更多
关键词 computer vision deep neural networks image processing image resolution unsupervised learning
下载PDF
A Preliminary Comparative Study on the Centering Algorithms for CassiniISS NAC Images
7
作者 T.Liang Q.-F.Zhang +2 位作者 G.-M.Liu W.-H.Zhu C.-S.Wang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第10期58-65,共8页
Obtaining high precision is an important consideration for astrometric studies using images from the Narrow Angle Camera(NAC)of the Cassini Imaging Science Subsystem(ISS).Selecting the best centering algorithm is key ... Obtaining high precision is an important consideration for astrometric studies using images from the Narrow Angle Camera(NAC)of the Cassini Imaging Science Subsystem(ISS).Selecting the best centering algorithm is key to enhancing astrometric accuracy.In this study,we compared the accuracy of five centering algorithms:Gaussian fitting,the modified moments method,and three point-spread function(PSF)fitting methods(effective PSF(ePSF),PSFEx,and extended PSF(x PSF)from the Cassini Imaging Central Laboratory for Operations(CICLOPS)).We assessed these algorithms using 70 ISS NAC star field images taken with CL1 and CL2 filters across different stellar magnitudes.The ePSF method consistently demonstrated the highest accuracy,achieving precision below 0.03 pixels for stars of magnitude 8-9.Compared to the previously considered best,the modified moments method,the e PSF method improved overall accuracy by about 10%and 21%in the sample and line directions,respectively.Surprisingly,the xPSF model provided by CICLOPS had lower precision than the ePSF.Conversely,the ePSF exhibits an improvement in measurement precision of 23%and 17%in the sample and line directions,respectively,over the xPSF.This discrepancy might be attributed to the xPSF focusing on photometry rather than astrometry.These findings highlight the necessity of constructing PSF models specifically tailored for astrometric purposes in NAC images and provide guidance for enhancing astrometric measurements using these ISS NAC images. 展开更多
关键词 methods:analytical techniques:image processing stars:imaging ASTROMETRY
下载PDF
Detection of Oscillations in Process Control Loops From Visual Image Space Using Deep Convolutional Networks
8
作者 Tao Wang Qiming Chen +3 位作者 Xun Lang Lei Xie Peng Li Hongye Su 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期982-995,共14页
Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have b... Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers. 展开更多
关键词 Convolutional neural networks(CNNs) deep learning image processing oscillation detection process industries
下载PDF
Hyperspectral Image Super-Resolution Network Based on Reinforcing Inter-Spectral Incremental Information
9
作者 Jialong Liang Qiang Li +2 位作者 Size Wang Charles Okanda Nyatega Xin Guan 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期307-325,共19页
Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identi... Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identification.But in traditional methods via deep convolution neural net-works,indiscriminately extracting and fusing spectral and spatial features makes it challenging toutilize the differentiated information across adjacent spectral channels.Thus,we proposed a multi-branch interleaved iterative upsampling hyperspectral image super-resolution reconstruction net-work(MIIUSR)to address the above problems.We reinforce spatial feature extraction by integrat-ing detailed features from different receptive fields across adjacent channels.Furthermore,we pro-pose an interleaved iterative upsampling process during the reconstruction stage,which progres-sively fuses incremental information among adjacent frequency bands.Additionally,we add twoparallel three dimensional(3D)feature extraction branches to the backbone network to extractspectral and spatial features of varying granularity.We further enhance the backbone network’sconstruction results by leveraging the difference between two dimensional(2D)channel-groupingspatial features and 3D multi-granularity features.The results obtained by applying the proposednetwork model to the CAVE test set show that,at a scaling factor of×4,the peak signal to noiseratio,spectral angle mapping,and structural similarity are 37.310 dB,3.525 and 0.9438,respec-tively.Besides,extensive experiments conducted on the Harvard and Foster datasets demonstratethe superior potential of the proposed model in hyperspectral super-resolution reconstruction. 展开更多
关键词 image processing hyperspectral image super-solution incremental information
下载PDF
Scale-space effect and scale hybridization in image intelligent recognition of geological discontinuities on rock slopes
10
作者 Mingyang Wang Enzhi Wang +1 位作者 Xiaoli Liu Congcong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1315-1336,共22页
Geological discontinuity(GD)plays a pivotal role in determining the catastrophic mechanical failure of jointed rock masses.Accurate and efficient acquisition of GD networks is essential for characterizing and understa... Geological discontinuity(GD)plays a pivotal role in determining the catastrophic mechanical failure of jointed rock masses.Accurate and efficient acquisition of GD networks is essential for characterizing and understanding the progressive damage mechanisms of slopes based on monitoring image data.Inspired by recent advances in computer vision,deep learning(DL)models have been widely utilized for image-based fracture identification.The multi-scale characteristics,image resolution and annotation quality of images will cause a scale-space effect(SSE)that makes features indistinguishable from noise,directly affecting the accuracy.However,this effect has not received adequate attention.Herein,we try to address this gap by collecting slope images at various proportional scales and constructing multi-scale datasets using image processing techniques.Next,we quantify the intensity of feature signals using metrics such as peak signal-to-noise ratio(PSNR)and structural similarity(SSIM).Combining these metrics with the scale-space theory,we investigate the influence of the SSE on the differentiation of multi-scale features and the accuracy of recognition.It is found that augmenting the image's detail capacity does not always yield benefits for vision-based recognition models.In light of these observations,we propose a scale hybridization approach based on the diffusion mechanism of scale-space representation.The results show that scale hybridization strengthens the tolerance of multi-scale feature recognition under complex environmental noise interference and significantly enhances the recognition accuracy of GD.It also facilitates the objective understanding,description and analysis of the rock behavior and stability of slopes from the perspective of image data. 展开更多
关键词 image processing Geological discontinuities Deep learning MULTI-SCALE Scale-space theory Scale hybridization
下载PDF
An Implementation of Multiscale Line Detection and Mathematical Morphology for Efficient and Precise Blood Vessel Segmentation in Fundus Images
11
作者 Syed Ayaz Ali Shah Aamir Shahzad +4 位作者 Musaed Alhussein Chuan Meng Goh Khursheed Aurangzeb Tong Boon Tang Muhammad Awais 《Computers, Materials & Continua》 SCIE EI 2024年第5期2565-2583,共19页
Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when deal... Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when dealing with color fundus images due to issues like non-uniformillumination,low contrast,and variations in vessel appearance,especially in the presence of different pathologies.Furthermore,the speed of the retinal vessel segmentation system is of utmost importance.With the surge of now available big data,the speed of the algorithm becomes increasingly important,carrying almost equivalent weightage to the accuracy of the algorithm.To address these challenges,we present a novel approach for retinal vessel segmentation,leveraging efficient and robust techniques based on multiscale line detection and mathematical morphology.Our algorithm’s performance is evaluated on two publicly available datasets,namely the Digital Retinal Images for Vessel Extraction dataset(DRIVE)and the Structure Analysis of Retina(STARE)dataset.The experimental results demonstrate the effectiveness of our method,withmean accuracy values of 0.9467 forDRIVE and 0.9535 for STARE datasets,aswell as sensitivity values of 0.6952 forDRIVE and 0.6809 for STARE datasets.Notably,our algorithmexhibits competitive performance with state-of-the-art methods.Importantly,it operates at an average speed of 3.73 s per image for DRIVE and 3.75 s for STARE datasets.It is worth noting that these results were achieved using Matlab scripts containing multiple loops.This suggests that the processing time can be further reduced by replacing loops with vectorization.Thus the proposed algorithm can be deployed in real time applications.In summary,our proposed system strikes a fine balance between swift computation and accuracy that is on par with the best available methods in the field. 展开更多
关键词 Line detector vessel detection LOCALIZATION mathematical morphology image processing
下载PDF
A novel medical image data protection scheme for smart healthcare system
12
作者 Mujeeb Ur Rehman Arslan Shafique +6 位作者 Muhammad Shahbaz Khan Maha Driss Wadii Boulila Yazeed Yasin Ghadi Suresh Babu Changalasetty Majed Alhaisoni Jawad Ahmad 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期821-836,共16页
The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of ... The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of the IoMT,particularly in the context of knowledge‐based learning systems.Smart healthcare systems leverage knowledge‐based learning to become more context‐aware,adaptable,and auditable while maintain-ing the ability to learn from historical data.In smart healthcare systems,devices capture images,such as X‐rays,Magnetic Resonance Imaging.The security and integrity of these images are crucial for the databases used in knowledge‐based learning systems to foster structured decision‐making and enhance the learning abilities of AI.Moreover,in knowledge‐driven systems,the storage and transmission of HD medical images exert a burden on the limited bandwidth of the communication channel,leading to data trans-mission delays.To address the security and latency concerns,this paper presents a lightweight medical image encryption scheme utilising bit‐plane decomposition and chaos theory.The results of the experiment yield entropy,energy,and correlation values of 7.999,0.0156,and 0.0001,respectively.This validates the effectiveness of the encryption system proposed in this paper,which offers high‐quality encryption,a large key space,key sensitivity,and resistance to statistical attacks. 展开更多
关键词 data analysis medical image processing SECURITY
下载PDF
UDT:U-shaped deformable transformer for subarachnoid haemorrhage image segmentation
13
作者 Wei Xie Lianghao Jin +4 位作者 Shiqi Hua Hao Sun Bo Sun Zhigang Tu Jun Liu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期756-768,共13页
Subarachnoid haemorrhage(SAH),mostly caused by the rupture of intracranial aneu-rysm,is a common disease with a high fatality rate.SAH lesions are generally diffusely distributed,showing a variety of scales with irreg... Subarachnoid haemorrhage(SAH),mostly caused by the rupture of intracranial aneu-rysm,is a common disease with a high fatality rate.SAH lesions are generally diffusely distributed,showing a variety of scales with irregular edges.The complex characteristics of lesions make SAH segmentation a challenging task.To cope with these difficulties,a u-shaped deformable transformer(UDT)is proposed for SAH segmentation.Specifically,first,a multi-scale deformable attention(MSDA)module is exploited to model the diffuseness and scale-variant characteristics of SAH lesions,where the MSDA module can fuse features in different scales and adjust the attention field of each element dynamically to generate discriminative multi-scale features.Second,the cross deformable attention-based skip connection(CDASC)module is designed to model the irregular edge char-acteristic of SAH lesions,where the CDASC module can utilise the spatial details from encoder features to refine the spatial information of decoder features.Third,the MSDA and CDASC modules are embedded into the backbone Res-UNet to construct the proposed UDT.Extensive experiments are conducted on the self-built SAH-CT dataset and two public medical datasets(GlaS and MoNuSeg).Experimental results show that the presented UDT achieves the state-of-the-art performance. 展开更多
关键词 image segmentation medical image processing
下载PDF
A Comprehensive Image Processing Framework for Early Diagnosis of Diabetic Retinopathy
14
作者 Kusum Yadav Yasser Alharbi +6 位作者 Eissa Jaber Alreshidi Abdulrahman Alreshidi Anuj Kumar Jain Anurag Jain Kamal Kumar Sachin Sharma Brij BGupta 《Computers, Materials & Continua》 SCIE EI 2024年第11期2665-2683,共19页
In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis... In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis of medical images is essential for doctors,as manual investigation often leads to inter-observer variability.This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework.The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization(MIWPSO)and Fuzzy C-Means clustering(FCM)algorithms.Traditional FCM does not incorporate spatial neighborhood features,making it highly sensitive to noise,which significantly affects segmentation output.Our method incorporates a modified FCM that includes spatial functions in the fuzzy membership matrix to eliminate noise.The results demonstrate that the proposed FCM-MIWPSO method achieves highly precise and accurate medical image segmentation.Furthermore,segmented images are classified as benign or malignant using the Decision Tree-Based Temporal Association Rule(DT-TAR)Algorithm.Comparative analysis with existing state-of-the-art models indicates that the proposed FCM-MIWPSO segmentation technique achieves a remarkable accuracy of 98.42%on the dataset,highlighting its significant impact on improving diagnostic capabilities in medical imaging. 展开更多
关键词 image processing biological data PSO Fuzzy C-Means(FCM)
下载PDF
Automatic area estimation of algal blooms in water bodies from UAV images using texture analysis
15
作者 Ajmeria Rahul Gundu Lokesh +2 位作者 Siddhartha Goswami R.N.Ponnalagu Radhika Sudha 《Water Science and Engineering》 EI CAS CSCD 2024年第1期62-71,共10页
Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solu... Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring. 展开更多
关键词 Algal bloom image processing Texture analysis Histogram analysis Unmanned aerial vehicles
下载PDF
Improving the Effectiveness of Image Classification Structural Methods by Compressing the Description According to the Information Content Criterion
16
作者 Yousef Ibrahim Daradkeh Volodymyr Gorokhovatskyi +1 位作者 Iryna Tvoroshenko Medien Zeghid 《Computers, Materials & Continua》 SCIE EI 2024年第8期3085-3106,共22页
The research aims to improve the performance of image recognition methods based on a description in the form of a set of keypoint descriptors.The main focus is on increasing the speed of establishing the relevance of ... The research aims to improve the performance of image recognition methods based on a description in the form of a set of keypoint descriptors.The main focus is on increasing the speed of establishing the relevance of object and etalon descriptions while maintaining the required level of classification efficiency.The class to be recognized is represented by an infinite set of images obtained from the etalon by applying arbitrary geometric transformations.It is proposed to reduce the descriptions for the etalon database by selecting the most significant descriptor components according to the information content criterion.The informativeness of an etalon descriptor is estimated by the difference of the closest distances to its own and other descriptions.The developed method determines the relevance of the full description of the recognized object with the reduced description of the etalons.Several practical models of the classifier with different options for establishing the correspondence between object descriptors and etalons are considered.The results of the experimental modeling of the proposed methods for a database including images of museum jewelry are presented.The test sample is formed as a set of images from the etalon database and out of the database with the application of geometric transformations of scale and rotation in the field of view.The practical problems of determining the threshold for the number of votes,based on which a classification decision is made,have been researched.Modeling has revealed the practical possibility of tenfold reducing descriptions with full preservation of classification accuracy.Reducing the descriptions by twenty times in the experiment leads to slightly decreased accuracy.The speed of the analysis increases in proportion to the degree of reduction.The use of reduction by the informativeness criterion confirmed the possibility of obtaining the most significant subset of features for classification,which guarantees a decent level of accuracy. 展开更多
关键词 Description reduction description relevance DESCRIPTOR image classification information content keypoint processing speed
下载PDF
An anti-aliasing filtering of quantum images in spatial domain using a pyramid structure
17
作者 吴凯 周日贵 罗佳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期223-237,共15页
As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most q... As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness. 展开更多
关键词 quantum color image processing anti-aliasing filtering algorithm quantum multiplier pyramid model
下载PDF
ED-Ged:Nighttime Image Semantic Segmentation Based on Enhanced Detail and Bidirectional Guidance
18
作者 Xiaoli Yuan Jianxun Zhang +1 位作者 Xuejie Wang Zhuhong Chu 《Computers, Materials & Continua》 SCIE EI 2024年第8期2443-2462,共20页
Semantic segmentation of driving scene images is crucial for autonomous driving.While deep learning technology has significantly improved daytime image semantic segmentation,nighttime images pose challenges due to fac... Semantic segmentation of driving scene images is crucial for autonomous driving.While deep learning technology has significantly improved daytime image semantic segmentation,nighttime images pose challenges due to factors like poor lighting and overexposure,making it difficult to recognize small objects.To address this,we propose an Image Adaptive Enhancement(IAEN)module comprising a parameter predictor(Edip),multiple image processing filters(Mdif),and a Detail Processing Module(DPM).Edip combines image processing filters to predict parameters like exposure and hue,optimizing image quality.We adopt a novel image encoder to enhance parameter prediction accuracy by enabling Edip to handle features at different scales.DPM strengthens overlooked image details,extending the IAEN module’s functionality.After the segmentation network,we integrate a Depth Guided Filter(DGF)to refine segmentation outputs.The entire network is trained end-to-end,with segmentation results guiding parameter prediction optimization,promoting self-learning and network improvement.This lightweight and efficient network architecture is particularly suitable for addressing challenges in nighttime image segmentation.Extensive experiments validate significant performance improvements of our approach on the ACDC-night and Nightcity datasets. 展开更多
关键词 Night driving semantic segmentation nighttime image processing adverse illumination differentiable filters
下载PDF
A Practical Study of Intelligent Image-Based Mobile Robot for Tracking Colored Objects
19
作者 Mofadal Alymani Mohamed Esmail Karar Hazem Ibrahim Shehata 《Computers, Materials & Continua》 SCIE EI 2024年第8期2181-2197,共17页
Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile r... Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads. 展开更多
关键词 Mobile robot autonomous systems fuzzy logic control real-time image processing
下载PDF
Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing
20
作者 Hui Li Rong-Wang Li +1 位作者 Peng Shu Yu-Qiang Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期287-295,共9页
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri... Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results. 展开更多
关键词 techniques:image processing methods:data analysis light pollution
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部