Cone-beam CT (CBCT) scanners are based on volumetric tomography, using a 2D extended digital array providing an area detector [1,2]. Compared to traditional CT, CBCT has many advantages, such as less X-ray beam limita...Cone-beam CT (CBCT) scanners are based on volumetric tomography, using a 2D extended digital array providing an area detector [1,2]. Compared to traditional CT, CBCT has many advantages, such as less X-ray beam limitation, and rapid scan time, etc. However, in CBCT images the x-ray beam has lower mean kilovolt (peak) energy, so the metal artifact is more pronounced on. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used to replace the pixels inside the metal object with the boundary pixels. The modified projection data, using synthetically Radon Transformation, were then used to reconstruct a new back projected CBCT image. In this paper, we present a method, based on the morphological, area and pixel operators, which we applied on the Radon transformed image, to reduce the metal artifacts in CBCT, then we built the Radon back project images using the radon invers transformation. The artifacts effects on the 3d-reconstruction is that, the soft tissues appears as bones or teeth. For the preprocessing of the CBCT images, two methods are used to recognize the noisy black areas that the first depends on thresholding and closing algorithm, and the second depends on tracing boundaries after using thresholding algorithm too. The intensity of these areas is the lowest in the image than other tissues, so we profit this property to detect the edges of these areas. These two methods are applied on phantom and patient image data. It deals with reconstructed CBCT dicom images and can effectively reduce such metal artifacts. Due to the data of the constructed images are corrupted by these metal artifacts, qualitative and quantitative analysis of CBCT images is very essential.展开更多
CBCT scanners have been widely used in angiography,radiotherapy guidance,mammography and oral maxillofacial imaging.To cut detector size,reduce manufacturing costs and radiation dose while keeping a reasonable FOV,the...CBCT scanners have been widely used in angiography,radiotherapy guidance,mammography and oral maxillofacial imaging.To cut detector size,reduce manufacturing costs and radiation dose while keeping a reasonable FOV,the flat panel detector can be placed off-center horizontally.This scanning configuration extends the FOV effectively.However,each projection is transversely truncated,bringing errors and artifacts in reconstruction.In this paper,a simple but practical method is proposed for this scanning geometry based on truncation compensation and the modified FDK algorithm.Numerical simulations with jaw phantom were conducted to evaluate the accuracy and practicability of the proposed method.A novel CBCT system for maxillofacial imaging is used for clinical test,which is equipped with an off-center small size flat panel detector.Results show that reconstruction accuracy is acceptable for clinical use,and the image quality appears sufficient for specific diagnostic requirements.It provides a novel solution for clinical CBCT system,in order to reduce radiation dose and manufacturing cost.展开更多
In helical cone-beam computed tomography(CT), Feldkamp-Davis-Kress(FDK) based image reconstruction algorithms are by far the most popular. However, artifacts are commonly met in the presence of lateral projection trun...In helical cone-beam computed tomography(CT), Feldkamp-Davis-Kress(FDK) based image reconstruction algorithms are by far the most popular. However, artifacts are commonly met in the presence of lateral projection truncation. The reason is that the ramp filter is global. To restrain the truncation artifacts, an approximate reconstruction formula is proposed based on the Derivative-Hilbert-Backprojection(DHB) framework. In the method, the first order derivative filter is followed by the Hilbert transform. Since the filtered projection values are almost zero by the first order derivative filter, the following Hilbert transform has little influence on the projection values, even though the projections are laterally truncated. The proposed method has two main advantages. First, it has comparable computational efficiency and image quality as well as the conventional helical FDK algorithm for non-truncated projections. The second advantage is that images can be reconstructed with acceptable quality and much lower computational cost in comparison to the Laplace operator based algorithm in cases with truncated projections. To point out the advantages of our method, simulations on the computer and real data experiments on our laboratory industrial cone-beam CT are conducted. The simulated and experimental results demonstrate that the method is feasible for image reconstruction in the case of projection truncation.展开更多
To solve the problem that metal artifacts severely damage the clarity of the organization structure in computed tomography(CT) images, a sinogram fusion-based metal artifact correction method is proposed. First, the...To solve the problem that metal artifacts severely damage the clarity of the organization structure in computed tomography(CT) images, a sinogram fusion-based metal artifact correction method is proposed. First, the metal image is segmented from the original CT image by the pre-set threshold. The original CT image and metal image are forward projected into the original projection sinogram and metal projection sinogram, respectively. The interpolation-based correction method and mean filter are used to correct the original CT image and preserve the edge of the corrected CT image, respectively. The filtered CT image is forward projected into the filtered image sinogram. According to the position of the metal sinogram in the original sinogram and filtered image sinogram, the corresponding sinograms PM^D ( in the original sinogram) and PM^C ( in the filtered image sinogram)can be acquired from the original sinogram and filtered image sinogram, respectively. Then, PM^D and PM^C are fused into the fused metal sinogram PM^F according to a certain proportion.The final sinogram can be acquired by fusing PM^F , PM^D and the original sinogram P^O. Finally, the final sinogram is reconstructed into the corrected CT image and metal information is compensated into the corrected CT image.Experiments on clinical images demonstrate that the proposed method can effectively reduce metal artifacts. A comparison with classical metal artifacts correction methods shows that the proposed metal artifacts correction method performs better in metal artifacts suppression and tissue feature preservation.展开更多
Current research of binocular vision systems mainly need to resolve the camera’s intrinsic parameters before the reconstruction of three-dimensional(3D)objects.The classical Zhang’calibration is hardly to calculate ...Current research of binocular vision systems mainly need to resolve the camera’s intrinsic parameters before the reconstruction of three-dimensional(3D)objects.The classical Zhang’calibration is hardly to calculate all errors caused by perspective distortion and lens distortion.Also,the image-matching algorithm of the binocular vision system still needs to be improved to accelerate the reconstruction speed of welding pool surfaces.In this paper,a preset coordinate system was utilized for camera calibration instead of Zhang’calibration.The binocular vision system was modified to capture images of welding pool surfaces by suppressing the strong arc interference during gas metal arc welding.Combining and improving the algorithms of speeded up robust features,binary robust invariant scalable keypoints,and KAZE,the feature information of points(i.e.,RGB values,pixel coordinates)was extracted as the feature vector of the welding pool surface.Based on the characteristics of the welding images,a mismatch-elimination algorithm was developed to increase the accuracy of image-matching algorithms.The world coordinates of matching feature points were calculated to reconstruct the 3D shape of the welding pool surface.The effectiveness and accuracy of the reconstruction of welding pool surfaces were verified by experimental results.This research proposes the development of binocular vision algorithms that can reconstruct the surface of welding pools accurately to realize intelligent welding control systems in the future.展开更多
Metal objects in X-ray computed tomography can cause severe artifacts.The state-of-the-art metal artifact reduction methods are in the sinogram inpainting category and are iterative methods.This paper proposes a proje...Metal objects in X-ray computed tomography can cause severe artifacts.The state-of-the-art metal artifact reduction methods are in the sinogram inpainting category and are iterative methods.This paper proposes a projectiondomain algorithm to reduce the metal artifacts.In this algorithm,the unknowns are the metal-affected projections,while the objective function is set up in the image domain.The data fidelity term is not utilized in the objective function.The objective function of the proposed algorithm consists of two terms:the total variation of the metalremoved image and the energy of the negative-valued pixels in the image.After the metal-affected projections are modified,the final image is reconstructed via the filtered backprojection algorithm.The feasibility of the proposed algorithm has been verified by real experimental data.展开更多
When the object contains metals,its x-ray computed tomography(CT)images are normally affected by streaking artifacts.These artifacts are mainly caused by the x-ray beam hardening effects,which deviate the measurements...When the object contains metals,its x-ray computed tomography(CT)images are normally affected by streaking artifacts.These artifacts are mainly caused by the x-ray beam hardening effects,which deviate the measurements from their true values.One interesting observation of the metal artifacts is that certain regions of the metal artifacts often appear as negative pixel values.Our novel idea in this paper is to set up an objective function that restricts the negative pixel values in the image.We must point out that the naïve idea of setting the negative pixel values in the reconstructed image to zero does not give the same result.This paper proposes an iterative algorithm to optimize this objective function,and the unknowns are the metal affected projections.Once the metal affected projections are estimated,the filtered backprojection algorithm is used to reconstruct the final image.This paper applies the proposed algorithm to some airport bag CT scans.The bags all contain unknown metallic objects.The metal artifacts are effectively reduced by the proposed algorithm.展开更多
The present paper describes an investigation conducted on metal detectors installed with a scanning probe.The authors applied a rotating magnetic field probe to metal detection.The rotating magnetic field probe is com...The present paper describes an investigation conducted on metal detectors installed with a scanning probe.The authors applied a rotating magnetic field probe to metal detection.The rotating magnetic field probe is comprised of two vertically placed rectangular exciting coils and a circular detecting coil.The experimental results confirmed that the probe can detect metal objects and provide more information about their shape,direction,and electromagnetic characteristics than conventional metal detector probes.A two-dimensional signal display shows a low-resolution image of the metal object and the signal phase indicates the object’s direction and electromagnetic characteristics.The experimental results show that excellent reconstruction of the surface shapes of metal objects can be obtained for both magnetic and nonmagnetic metals under present conditions.There is also the potential for the approximate shape of a metal object to be estimated from the reconstructed image.展开更多
目的探讨压缩感知结合层面编码金属伪影校正(compressed sensing-slice-encoding metal artifact correction,CS-SEMAC)技术用于脊柱金属植入物术后MRI的应用价值。材料与方法比较招募的35例脊柱金属植入物术后患者3.0 T MRI矢状位CS-SE...目的探讨压缩感知结合层面编码金属伪影校正(compressed sensing-slice-encoding metal artifact correction,CS-SEMAC)技术用于脊柱金属植入物术后MRI的应用价值。材料与方法比较招募的35例脊柱金属植入物术后患者3.0 T MRI矢状位CS-SEMAC序列、高带宽(high bandwidth,HBW)序列和水脂分离(Dixon)三种序列在金属植入物伪影面积、椎体信噪比(signal-to-noise ratio,SNR)、图像质量、图像清晰度、脂肪抑制效果以及植入物周围解剖结构的可见性方面的差异。结果CS-SEMAC在T1、T2矢状位图像上金属伪影面积分别为(15.45±6.84)、(22.23±9.76)cm^(2),显著低于其他两种序列,差异具有统计学意义(P<0.001);三种序列在T2抑脂矢状面图像上的SNR两两比较显示:HBW序列椎体SNR显著高于其他两种序列,Dixon序列椎体SNR显著低于其他两种序列,CS-SEMAC序列椎体SNR低于HBW序列,高于Dixon序列,差异均有统计学意义(P<0.001);在图像清晰度上,T2WI-tirm-CS-SEMAC序列评分低于其他两种序列,差异具有统计学意义(P<0.001);T2WI-tirm-CS-SEMAC序列在图像质量和脂肪抑制效果方面评分显著优于其他两种序列,差异具有统计学意义(P<0.001);并且CS-SEMAC序列相较于其他两种序列更能清晰显示植入物周围椎体、椎弓根、椎间孔及神经根,差异具有统计学意义(P<0.001)。结论CS-SEMAC序列相比于HBW、Dixon序列能够有效减少植入物周围的金属伪影,并且能显著提高T2抑脂序列的图像质量和脂肪抑制效果,虽然在T2抑脂上金属植入物邻近椎体SNR相比HBW序列有所下降,图像比HBW和Dixon图像略模糊,但是椎体周围关键解剖结构的可见度明显提升,对脊柱术后解剖结构的显示有一定优势。展开更多
目的为解决修复后的投影数据与周围投影数据之间过渡不连续的问题,提出一种基于正弦图融合的CT金属伪影校正算法。方法通过预处理和K均值聚类技术将具有相同空间信息的组织聚在一起生成先验图像,并根据金属区域与先验图像的投影差异校...目的为解决修复后的投影数据与周围投影数据之间过渡不连续的问题,提出一种基于正弦图融合的CT金属伪影校正算法。方法通过预处理和K均值聚类技术将具有相同空间信息的组织聚在一起生成先验图像,并根据金属区域与先验图像的投影差异校正原始图像投影以得到校正后的投影数据,最后采用滤波反投影算法重建得到校正后的CT图像。结果在CT仿真数据验证中,基于先验插值的金属伪影校正(Fusion Prior-Based Metal Artifact Reduction,FP-MAR)算法在单金属校正和多金属校正中的峰值信噪比分别为0.943和0.915,比线性插值校正金属伪影(Linear Interpolation Based Metal Artifact Reduction,LI-MAR)算法分别增加了28.65%和44.55%;FP-MAR算法在单金属校正和多金属校正中的结构相似性分别为0.984和0.961,比LI-MAR算法分别增加了48.41%和64.27%。临床CT伪影影像验证中,FP-MAR算法校正后CT金属伪影的主观评价高于LI-MAR算法校正后的CT金属伪影图像,且二者差异有统计学意义。结论本研究提出的算法可有效解决修复后的投影数据与周围投影数据之间过渡不连续的问题,更好地保留金属结构附近的信息。展开更多
目的 比较能谱CT金属伪影去除算法及虚拟单能图像重建与传统迭代重建在减少脊柱金属植入物伪影的差异。方法 56例脊柱矫形术接受金属植入物行标准能谱CT检查,包括常规迭代重建、金属伪影去除算法和虚拟单能图像重建。测量衰减系数(HU)...目的 比较能谱CT金属伪影去除算法及虚拟单能图像重建与传统迭代重建在减少脊柱金属植入物伪影的差异。方法 56例脊柱矫形术接受金属植入物行标准能谱CT检查,包括常规迭代重建、金属伪影去除算法和虚拟单能图像重建。测量衰减系数(HU)和噪声(SD),以计算椎旁肌和椎管的信噪比。两名放射科医师独立评价图像质量和伪影减少程度。结果 与常规迭代重建相比,金属伪影去除算法和高keV虚拟单能图像显著降低低密度伪影及高密度伪影。与常规迭代重建相比,金属伪影去除算法和高keV虚拟单能图像椎旁肌(34.6±17.0HU vs. 26.1±13.5HU及34.6±17.0HU vs. 27.0±14.2)和椎管(102.5±60.1HU vs. 72.1±39.3HU及102.5±60.1HU vs. 60.1±38.0HU, P 均<0.05)的噪声伪影减少。观察者间评价主观图像质量的一致性良好,ICC=0.74。在主观图像质量评价中,金属伪影去除算法和高keV虚拟单能图像上表现出伪影减少分别为44/56例(78.6%)、48/56例(85.7%)。结论 能谱CT金属伪影去除算法和高keV虚拟单能图像重建上客观及主观伪像均减少,金属伪影去除算法联合虚拟单能图像的组合可能有希望进一步减少伪影。展开更多
文摘Cone-beam CT (CBCT) scanners are based on volumetric tomography, using a 2D extended digital array providing an area detector [1,2]. Compared to traditional CT, CBCT has many advantages, such as less X-ray beam limitation, and rapid scan time, etc. However, in CBCT images the x-ray beam has lower mean kilovolt (peak) energy, so the metal artifact is more pronounced on. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used to replace the pixels inside the metal object with the boundary pixels. The modified projection data, using synthetically Radon Transformation, were then used to reconstruct a new back projected CBCT image. In this paper, we present a method, based on the morphological, area and pixel operators, which we applied on the Radon transformed image, to reduce the metal artifacts in CBCT, then we built the Radon back project images using the radon invers transformation. The artifacts effects on the 3d-reconstruction is that, the soft tissues appears as bones or teeth. For the preprocessing of the CBCT images, two methods are used to recognize the noisy black areas that the first depends on thresholding and closing algorithm, and the second depends on tracing boundaries after using thresholding algorithm too. The intensity of these areas is the lowest in the image than other tissues, so we profit this property to detect the edges of these areas. These two methods are applied on phantom and patient image data. It deals with reconstructed CBCT dicom images and can effectively reduce such metal artifacts. Due to the data of the constructed images are corrupted by these metal artifacts, qualitative and quantitative analysis of CBCT images is very essential.
基金Supported by National Key Technology R&D Program of the Ministry of Science and Technology(No.2012BAI07B05)
文摘CBCT scanners have been widely used in angiography,radiotherapy guidance,mammography and oral maxillofacial imaging.To cut detector size,reduce manufacturing costs and radiation dose while keeping a reasonable FOV,the flat panel detector can be placed off-center horizontally.This scanning configuration extends the FOV effectively.However,each projection is transversely truncated,bringing errors and artifacts in reconstruction.In this paper,a simple but practical method is proposed for this scanning geometry based on truncation compensation and the modified FDK algorithm.Numerical simulations with jaw phantom were conducted to evaluate the accuracy and practicability of the proposed method.A novel CBCT system for maxillofacial imaging is used for clinical test,which is equipped with an off-center small size flat panel detector.Results show that reconstruction accuracy is acceptable for clinical use,and the image quality appears sufficient for specific diagnostic requirements.It provides a novel solution for clinical CBCT system,in order to reduce radiation dose and manufacturing cost.
基金Supported by the National High Technology Research and Development Program of China(No.2012AA011603)National Nature Science Foundation of China(No.61372172)
文摘In helical cone-beam computed tomography(CT), Feldkamp-Davis-Kress(FDK) based image reconstruction algorithms are by far the most popular. However, artifacts are commonly met in the presence of lateral projection truncation. The reason is that the ramp filter is global. To restrain the truncation artifacts, an approximate reconstruction formula is proposed based on the Derivative-Hilbert-Backprojection(DHB) framework. In the method, the first order derivative filter is followed by the Hilbert transform. Since the filtered projection values are almost zero by the first order derivative filter, the following Hilbert transform has little influence on the projection values, even though the projections are laterally truncated. The proposed method has two main advantages. First, it has comparable computational efficiency and image quality as well as the conventional helical FDK algorithm for non-truncated projections. The second advantage is that images can be reconstructed with acceptable quality and much lower computational cost in comparison to the Laplace operator based algorithm in cases with truncated projections. To point out the advantages of our method, simulations on the computer and real data experiments on our laboratory industrial cone-beam CT are conducted. The simulated and experimental results demonstrate that the method is feasible for image reconstruction in the case of projection truncation.
基金Open Research Fund of the Key Laboratory of Computer Netw ork and Information Integration of Ministry of Education of Southeast University(No.K93-9-2014-10C)the Scientific Research Foundation of Education Department of Anhui Province(No.KJ2014A186,SK2015A433)the National Basic Research Program of China(973 Program)(No.2010CB732503)
文摘To solve the problem that metal artifacts severely damage the clarity of the organization structure in computed tomography(CT) images, a sinogram fusion-based metal artifact correction method is proposed. First, the metal image is segmented from the original CT image by the pre-set threshold. The original CT image and metal image are forward projected into the original projection sinogram and metal projection sinogram, respectively. The interpolation-based correction method and mean filter are used to correct the original CT image and preserve the edge of the corrected CT image, respectively. The filtered CT image is forward projected into the filtered image sinogram. According to the position of the metal sinogram in the original sinogram and filtered image sinogram, the corresponding sinograms PM^D ( in the original sinogram) and PM^C ( in the filtered image sinogram)can be acquired from the original sinogram and filtered image sinogram, respectively. Then, PM^D and PM^C are fused into the fused metal sinogram PM^F according to a certain proportion.The final sinogram can be acquired by fusing PM^F , PM^D and the original sinogram P^O. Finally, the final sinogram is reconstructed into the corrected CT image and metal information is compensated into the corrected CT image.Experiments on clinical images demonstrate that the proposed method can effectively reduce metal artifacts. A comparison with classical metal artifacts correction methods shows that the proposed metal artifacts correction method performs better in metal artifacts suppression and tissue feature preservation.
基金Supported by National Natural Science Foundation of China(Grant No.51775313)Major Program of Shandong Province Natural Science Foundation(Grant No.ZR2018ZC1760)Young Scholars Program of Shandong University(Grant No.2017WLJH24).
文摘Current research of binocular vision systems mainly need to resolve the camera’s intrinsic parameters before the reconstruction of three-dimensional(3D)objects.The classical Zhang’calibration is hardly to calculate all errors caused by perspective distortion and lens distortion.Also,the image-matching algorithm of the binocular vision system still needs to be improved to accelerate the reconstruction speed of welding pool surfaces.In this paper,a preset coordinate system was utilized for camera calibration instead of Zhang’calibration.The binocular vision system was modified to capture images of welding pool surfaces by suppressing the strong arc interference during gas metal arc welding.Combining and improving the algorithms of speeded up robust features,binary robust invariant scalable keypoints,and KAZE,the feature information of points(i.e.,RGB values,pixel coordinates)was extracted as the feature vector of the welding pool surface.Based on the characteristics of the welding images,a mismatch-elimination algorithm was developed to increase the accuracy of image-matching algorithms.The world coordinates of matching feature points were calculated to reconstruct the 3D shape of the welding pool surface.The effectiveness and accuracy of the reconstruction of welding pool surfaces were verified by experimental results.This research proposes the development of binocular vision algorithms that can reconstruct the surface of welding pools accurately to realize intelligent welding control systems in the future.
基金This research is partially supported by NIH,No.R15EB024283.
文摘Metal objects in X-ray computed tomography can cause severe artifacts.The state-of-the-art metal artifact reduction methods are in the sinogram inpainting category and are iterative methods.This paper proposes a projectiondomain algorithm to reduce the metal artifacts.In this algorithm,the unknowns are the metal-affected projections,while the objective function is set up in the image domain.The data fidelity term is not utilized in the objective function.The objective function of the proposed algorithm consists of two terms:the total variation of the metalremoved image and the energy of the negative-valued pixels in the image.After the metal-affected projections are modified,the final image is reconstructed via the filtered backprojection algorithm.The feasibility of the proposed algorithm has been verified by real experimental data.
基金This research is partially supported by NIH,No.R15EB024283.
文摘When the object contains metals,its x-ray computed tomography(CT)images are normally affected by streaking artifacts.These artifacts are mainly caused by the x-ray beam hardening effects,which deviate the measurements from their true values.One interesting observation of the metal artifacts is that certain regions of the metal artifacts often appear as negative pixel values.Our novel idea in this paper is to set up an objective function that restricts the negative pixel values in the image.We must point out that the naïve idea of setting the negative pixel values in the reconstructed image to zero does not give the same result.This paper proposes an iterative algorithm to optimize this objective function,and the unknowns are the metal affected projections.Once the metal affected projections are estimated,the filtered backprojection algorithm is used to reconstruct the final image.This paper applies the proposed algorithm to some airport bag CT scans.The bags all contain unknown metallic objects.The metal artifacts are effectively reduced by the proposed algorithm.
文摘The present paper describes an investigation conducted on metal detectors installed with a scanning probe.The authors applied a rotating magnetic field probe to metal detection.The rotating magnetic field probe is comprised of two vertically placed rectangular exciting coils and a circular detecting coil.The experimental results confirmed that the probe can detect metal objects and provide more information about their shape,direction,and electromagnetic characteristics than conventional metal detector probes.A two-dimensional signal display shows a low-resolution image of the metal object and the signal phase indicates the object’s direction and electromagnetic characteristics.The experimental results show that excellent reconstruction of the surface shapes of metal objects can be obtained for both magnetic and nonmagnetic metals under present conditions.There is also the potential for the approximate shape of a metal object to be estimated from the reconstructed image.
文摘目的探讨压缩感知结合层面编码金属伪影校正(compressed sensing-slice-encoding metal artifact correction,CS-SEMAC)技术用于脊柱金属植入物术后MRI的应用价值。材料与方法比较招募的35例脊柱金属植入物术后患者3.0 T MRI矢状位CS-SEMAC序列、高带宽(high bandwidth,HBW)序列和水脂分离(Dixon)三种序列在金属植入物伪影面积、椎体信噪比(signal-to-noise ratio,SNR)、图像质量、图像清晰度、脂肪抑制效果以及植入物周围解剖结构的可见性方面的差异。结果CS-SEMAC在T1、T2矢状位图像上金属伪影面积分别为(15.45±6.84)、(22.23±9.76)cm^(2),显著低于其他两种序列,差异具有统计学意义(P<0.001);三种序列在T2抑脂矢状面图像上的SNR两两比较显示:HBW序列椎体SNR显著高于其他两种序列,Dixon序列椎体SNR显著低于其他两种序列,CS-SEMAC序列椎体SNR低于HBW序列,高于Dixon序列,差异均有统计学意义(P<0.001);在图像清晰度上,T2WI-tirm-CS-SEMAC序列评分低于其他两种序列,差异具有统计学意义(P<0.001);T2WI-tirm-CS-SEMAC序列在图像质量和脂肪抑制效果方面评分显著优于其他两种序列,差异具有统计学意义(P<0.001);并且CS-SEMAC序列相较于其他两种序列更能清晰显示植入物周围椎体、椎弓根、椎间孔及神经根,差异具有统计学意义(P<0.001)。结论CS-SEMAC序列相比于HBW、Dixon序列能够有效减少植入物周围的金属伪影,并且能显著提高T2抑脂序列的图像质量和脂肪抑制效果,虽然在T2抑脂上金属植入物邻近椎体SNR相比HBW序列有所下降,图像比HBW和Dixon图像略模糊,但是椎体周围关键解剖结构的可见度明显提升,对脊柱术后解剖结构的显示有一定优势。
文摘目的为解决修复后的投影数据与周围投影数据之间过渡不连续的问题,提出一种基于正弦图融合的CT金属伪影校正算法。方法通过预处理和K均值聚类技术将具有相同空间信息的组织聚在一起生成先验图像,并根据金属区域与先验图像的投影差异校正原始图像投影以得到校正后的投影数据,最后采用滤波反投影算法重建得到校正后的CT图像。结果在CT仿真数据验证中,基于先验插值的金属伪影校正(Fusion Prior-Based Metal Artifact Reduction,FP-MAR)算法在单金属校正和多金属校正中的峰值信噪比分别为0.943和0.915,比线性插值校正金属伪影(Linear Interpolation Based Metal Artifact Reduction,LI-MAR)算法分别增加了28.65%和44.55%;FP-MAR算法在单金属校正和多金属校正中的结构相似性分别为0.984和0.961,比LI-MAR算法分别增加了48.41%和64.27%。临床CT伪影影像验证中,FP-MAR算法校正后CT金属伪影的主观评价高于LI-MAR算法校正后的CT金属伪影图像,且二者差异有统计学意义。结论本研究提出的算法可有效解决修复后的投影数据与周围投影数据之间过渡不连续的问题,更好地保留金属结构附近的信息。
文摘目的 比较能谱CT金属伪影去除算法及虚拟单能图像重建与传统迭代重建在减少脊柱金属植入物伪影的差异。方法 56例脊柱矫形术接受金属植入物行标准能谱CT检查,包括常规迭代重建、金属伪影去除算法和虚拟单能图像重建。测量衰减系数(HU)和噪声(SD),以计算椎旁肌和椎管的信噪比。两名放射科医师独立评价图像质量和伪影减少程度。结果 与常规迭代重建相比,金属伪影去除算法和高keV虚拟单能图像显著降低低密度伪影及高密度伪影。与常规迭代重建相比,金属伪影去除算法和高keV虚拟单能图像椎旁肌(34.6±17.0HU vs. 26.1±13.5HU及34.6±17.0HU vs. 27.0±14.2)和椎管(102.5±60.1HU vs. 72.1±39.3HU及102.5±60.1HU vs. 60.1±38.0HU, P 均<0.05)的噪声伪影减少。观察者间评价主观图像质量的一致性良好,ICC=0.74。在主观图像质量评价中,金属伪影去除算法和高keV虚拟单能图像上表现出伪影减少分别为44/56例(78.6%)、48/56例(85.7%)。结论 能谱CT金属伪影去除算法和高keV虚拟单能图像重建上客观及主观伪像均减少,金属伪影去除算法联合虚拟单能图像的组合可能有希望进一步减少伪影。