期刊文献+
共找到198篇文章
< 1 2 10 >
每页显示 20 50 100
Estimation-free spatial-domain image reconstruction of structured illumination microscopy 被引量:1
1
作者 Xiaoyan Li Shijie Tu +4 位作者 Yile Sun Yubing Han Xiang Hao Cuifang kuang Xu Liu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期45-58,共14页
Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona... Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise. 展开更多
关键词 Structured illumination microscopy image reconstruction spatial domain digital micromirror device(DMD)
下载PDF
A generalized deep neural network approach for improving resolution of fluorescence microscopy images
2
作者 Zichen Jin Qing He +1 位作者 Yang Liu Kaige Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第6期53-65,共13页
Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural netwo... Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural network based on a generative adversarial network(GAN).The generator employs a U-Net-based network,which integrates Dense Net for the downsampling component.The proposed method has excellent properties,for example,the network model is trained with several different datasets of biological structures;the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging;and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets.In addition,experimental results showed that the method improved the resolution of caveolin-coated pits(CCPs)structures from 264 nm to 138 nm,a 1.91-fold increase,and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels. 展开更多
关键词 Deep learning super-resolution imaging generalized model framework generation adversarial networks image reconstruction.
下载PDF
Triple-path feature transform network for ring-array photoacoustic tomography image reconstruction
3
作者 Lingyu Ma Zezheng Qin +1 位作者 Yiming Ma Mingjian Sun 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期23-40,共18页
Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high... Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling. 展开更多
关键词 Deep learning feature transformation image reconstruction limited-view measurement photoacoustic tomography.
下载PDF
Underwater image clarifying based on human visual colour constancy using double-opponency
4
作者 Bin Kong Jing Qian +2 位作者 Pinhao Song Jing Yang Amir Hussain 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期632-648,共17页
Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater ope... Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater operations.The main problem in classic underwater image restoration or enhancement methods is that they consume long calcu-lation time,and often,the colour or contrast of the result images is still unsatisfied.Instead of using the complicated physical model of underwater imaging degradation,we propose a new method to deal with underwater images by imitating the colour constancy mechanism of human vision using double-opponency.Firstly,the original image is converted to the LMS space.Then the signals are linearly combined,and Gaussian convolutions are per-formed to imitate the function of receptive fields(RFs).Next,two RFs with different sizes work together to constitute the double-opponency response.Finally,the underwater light is estimated to correct the colours in the image.Further contrast stretching on the luminance is optional.Experiments show that the proposed method can obtain clarified underwater images with higher quality than before,and it spends significantly less time cost compared to other previously published typical methods. 展开更多
关键词 COMPUTERS computer vision image processing image reconstruction
下载PDF
Multi-scale cross-domain alignment for person image generation
5
作者 Liyuan Ma Tingwei Gao +1 位作者 Haibin Shen Kejie Huang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期374-387,共14页
Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of app... Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of appearance domain and pose domain.Previous alignment methods,such as appearance flow warping,correspondence learning and cross attention,often encounter challenges when it comes to producing fine texture details.These approaches suffer from limitations in accurately estimating appearance flows due to the lack of global receptive field.Alternatively,they can only perform cross-domain alignment on high-level feature maps with small spatial dimensions since the computational complexity increases quadratically with larger feature sizes.In this article,the significance of multi-scale alignment,in both low-level and high-level domains,for ensuring reliable cross-domain alignment of appearance and pose is demonstrated.To this end,a novel and effective method,named Multi-scale Crossdomain Alignment(MCA)is proposed.Firstly,MCA adopts global context aggregation transformer to model multi-scale interaction between pose and appearance inputs,which employs pair-wise window-based cross attention.Furthermore,leveraging the integrated global source information for each target position,MCA applies flexible flow prediction head and point correlation to effectively conduct warping and fusing for final transformed person image generation.Our proposed MCA achieves superior performance on two popular datasets than other methods,which verifies the effectiveness of our approach. 展开更多
关键词 artificial intelligence image processing image reconstruction
下载PDF
A new imaging mode based on X-ray CT as prior image and sparsely sampled projections for rapid clinical proton CT
6
作者 Yu-Qing Yang Wen-Cheng Fang +4 位作者 Xiao-Xia Huang Qiang Du Ming Li Jian Zheng Zhen-Tang Zhao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第8期64-74,共11页
Proton computed tomography(CT)has a distinct practical significance in clinical applications.It eliminates 3–5%errors caused by the transformation of Hounsfield unit(HU)to relative stopping power(RSP)values when usin... Proton computed tomography(CT)has a distinct practical significance in clinical applications.It eliminates 3–5%errors caused by the transformation of Hounsfield unit(HU)to relative stopping power(RSP)values when using X-ray CT for positioning and treatment planning systems(TPSs).Following the development of FLASH proton therapy,there are increased requirements for accurate and rapid positioning in TPSs.Thus,a new rapid proton CT imaging mode is proposed based on sparsely sampled projections.The proton beam was boosted to 350 MeV by a compact proton linear accelerator(LINAC).In this study,the comparisons of the proton scattering with the energy of 350 MeV and 230 MeV are conducted based on GEANT4 simulations.As the sparsely sampled information associated with beam acquisitions at 12 angles is not enough for reconstruction,X-ray CT is used as a prior image.The RSP map generated by converting the X-ray CT was constructed based on Monte Carlo simulations.Considering the estimation of the most likely path(MLP),the prior image-constrained compressed sensing(PICCS)algorithm is used to reconstruct images from two different phantoms using sparse proton projections of 350 MeV parallel proton beam.The results show that it is feasible to realize the proton image reconstruction with the rapid proton CT imaging proposed in this paper.It can produce RSP maps with much higher accuracy for TPSs and fast positioning to achieve ultra-fast imaging for real-time image-guided radiotherapy(IGRT)in clinical proton therapy applications. 展开更多
关键词 Proton CT Real-time image guidance image reconstruction Proton therapy
下载PDF
Artificial Intelligence-Based Image Reconstruction for Computed Tomography: A Survey
7
作者 Quan Yan Yunfan Ye +3 位作者 Jing Xia Zhiping Cai Zhilin Wang Qiang Ni 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2545-2558,共14页
Computed tomography has made significant advances since its intro-duction in the early 1970s,where researchers have mainly focused on the quality of image reconstruction in the early stage.However,radiation exposure p... Computed tomography has made significant advances since its intro-duction in the early 1970s,where researchers have mainly focused on the quality of image reconstruction in the early stage.However,radiation exposure poses a health risk,prompting the demand of the lowest possible dose when carrying out CT examinations.To acquire high-quality reconstruction images with low dose radiation,CT reconstruction techniques have evolved from conventional reconstruction such as analytical and iterative reconstruction,to reconstruction methods based on artificial intelligence(AI).All these efforts are devoted to con-structing high-quality images using only low doses with fast reconstruction speed.In particular,conventional reconstruction methods usually optimize one aspect,while AI-based reconstruction has finally managed to attain all goals in one shot.However,there are limitations such as the requirements on large datasets,unstable performance,and weak generalizability in AI-based reconstruction methods.This work presents the review and discussion on the classification,the commercial use,the advantages,and the limitations of AI-based image reconstruction methods in CT. 展开更多
关键词 Computed tomography image reconstruction artificial intelligence
下载PDF
Accelerating SAGE algorithm in PET image reconstruction by rescaled block-iterative method 被引量:1
8
作者 朱宏擎 舒华忠 +1 位作者 周健 罗立民 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期207-210,共4页
A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algo... A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET imagereconstruction. In the new approach, the projection data is partitioned into disjoint blocks; eachiteration step involves only one of these blocks. SAGE updates the parameters sequentially in eachblock. In experiments, the RBI-SAGE algorithm and classical SAGE algorithm are compared in theapplication on positron emission tomography (PET) image reconstruction. Simulation results show thatRBI-SAGE has better performance than SAGE in both convergence and image quality. 展开更多
关键词 positron emission tomography space-alternating generalizedexpectation-maximization image reconstruction rescaled block-iterative maximum likelihood
下载PDF
FITTING CORRECTION METHOD OF RING ARTIFACTS FOR RECONSTRUCTING CONE-BEAM CT IMAGES 被引量:1
9
作者 罗守华 吴婧 +1 位作者 张波 陈功 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第1期34-38,共5页
In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often distur... In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images 展开更多
关键词 image processing image reconstruction flat-panel detector fitting correction method
下载PDF
Investigation of prior image constrained compressed sensing-based spectral X-ray CT image reconstruction
10
作者 周正东 余子丽 +1 位作者 张雯雯 管绍林 《Journal of Southeast University(English Edition)》 EI CAS 2016年第4期420-425,共6页
To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compres... To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively. 展开更多
关键词 spectral X-ray CT prior image compressed sensing optimization algorithm image reconstruction
下载PDF
Image reconstruction based on total-variation minimization and alternating direction method in linear scan computed tomography 被引量:6
11
作者 张瀚铭 王林元 +3 位作者 闫镔 李磊 席晓琦 陆利忠 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期582-589,共8页
Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in prac... Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem. 展开更多
关键词 linear scan CT image reconstruction total variation alternating direction method
下载PDF
An algorithm for computed tomography image reconstruction from limited-view projections 被引量:5
12
作者 王林元 李磊 +3 位作者 闫镔 江成顺 王浩宇 包尚联 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期642-647,共6页
With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper d... With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed. 展开更多
关键词 limited-view problem computed tomography image reconstruction algorithms reconstruction-reference difference algorithm adaptive steepest descent-projection onto convex sets algorithm
下载PDF
Reconstruction of electrical capacitance tomography images based on fast linearized alternating direction method of multipliers for two-phase flow system 被引量:4
13
作者 Chongkun Xia Chengli Su +1 位作者 Jiangtao Cao Ping Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第5期597-605,共9页
Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed ... Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application. 展开更多
关键词 Electrical capacitance tomography image reconstruction Compressed sensing Alternating direction method of multipliers Two-phase flow
下载PDF
Hybrid model for muon tomography and quantitative analysis of image quality 被引量:4
14
作者 Si-Yuan Luo Yu-He Huang +6 位作者 Xuan-Tao Ji Lie He Wan-Cheng Xiao Feng-Jiao Luo Song Feng Min Xiao Xiao-Dong Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第7期1-13,共13页
Muon tomography is a novel method for the non-destructive imaging of materials based on muon rays,which are highly penetrating in natural background radiation.Currently,the most commonly used imaging methods include m... Muon tomography is a novel method for the non-destructive imaging of materials based on muon rays,which are highly penetrating in natural background radiation.Currently,the most commonly used imaging methods include muon radiography and muon tomography.A previously studied method known as coinciding muon trajectory density tomography,which utilizes muonic secondary particles,is proposed to image low and medium atomic number(Z)materials.However,scattering tomography is mostly used to image high-Z materials,and coinciding muon trajectory density tomography exhibits a hollow phenomenon in the imaging results owing to the self-absorption effect.To address the shortcomings of the individual imaging methods,hybrid model tomography combining scattering tomography and coinciding muon trajectory density tomography is proposed and verified.In addition,the peak signal-to-noise ratio was introduced to quantitatively analyze the image quality.Different imaging models were simulated using the Geant4 toolkit to confirm the advantages of this innovative method.The simulation results showed that hybrid model tomography can image centimeter-scale materials with low,medium,and high Z simultaneously.For high-Z materials with similar atomic numbers,this method can clearly distinguish those with apparent differences in density.According to the peak signal-to-noise ratio of the analysis,the reconstructed image quality of the new method was significantly higher than that of the individual imaging methods.This study provides a reliable approach to the compatibility of scattering tomography and coinciding muon trajectory density tomography. 展开更多
关键词 Monte Carlo simulation Muon tomography image reconstruction
下载PDF
An ECT System Based on Improved RBF Network and Adaptive Wavelet Image Enhancement for Solid/Gas Two-phase Flow 被引量:3
15
作者 陈夏 胡红利 +1 位作者 张娟 周屈兰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第2期359-367,共9页
Electrical capacitance tomography(ECT) is a non-invasive imaging technique that aims at visualizing the cross-sectional permittivity distribution and phase distribution of solid/gas two-phase flow based on the measure... Electrical capacitance tomography(ECT) is a non-invasive imaging technique that aims at visualizing the cross-sectional permittivity distribution and phase distribution of solid/gas two-phase flow based on the measured capacitance.To solve the nonlinear and ill-posed inverse problem:image reconstruction of ECT system,this paper proposed a new image reconstruction method based on improved radial basis function(RBF) neural network combined with adaptive wavelet image enhancement.Firstly,an improved RBF network was applied to establish the mapping model between the reconstruction image pixels and the capacitance values measured.Then,for better image quality,adaptive wavelet image enhancement technique was emphatically analyzed and studied,which belongs to a space-frequency analysis method and is suitable for image feature-enhanced.Through multi-level wavelet decomposition,edge points of the image produced from RBF network can be determined based on the neighborhood property of each sub-band;noise distribution in the space-frequency domain can be estimated based on statistical characteristics;after that a self-adaptive edge enhancement gain can be constructed.Finally,the image is reconstructed with adjusting wavelet coefficients.In this paper,a 12-electrode ECT system and a pneumatic conveying platform were built up to verify this image reconstruction algorithm.Experimental results demonstrated that adaptive wavelet image enhancement technique effectively implemented edge detection and image enhancement,and the improved RBF network and adaptive wavelet image enhancement hybrid algorithm greatly improved the quality of reconstructed image of solid/gas two-phase flow [pulverized coal(PC)/air]. 展开更多
关键词 electrical capacitance tomography.image reconstruction radial basis function network wavelet imageenhance ment
下载PDF
Super-resolution reconstruction of synthetic-aperture radar image using adaptive-threshold singular value decomposition technique 被引量:2
16
作者 朱正为 周建江 《Journal of Central South University》 SCIE EI CAS 2011年第3期809-815,共7页
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F... A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results. 展开更多
关键词 synthetic-aperture radar image reconstruction SUPER-RESOLUTION singular value decomposition adaptive-threshold
下载PDF
Image Zernike Moments Shape Feature Evaluation Based on Image Reconstruction 被引量:2
17
作者 LIU Maofu HE Yanxiang YE Bin 《Geo-Spatial Information Science》 2007年第3期191-195,共5页
The evaluation approach to the accuracy of the image feature descriptors plays an important role in image feature extraction. We point out that the image shape feature can be described by the Zernike moments set while... The evaluation approach to the accuracy of the image feature descriptors plays an important role in image feature extraction. We point out that the image shape feature can be described by the Zernike moments set while briefly introducing the basic concept of the Zernike moment. After talking about the image reconstruction technique based on the inverse transformation of Zernike moment, the evaluation approach to the accuracy of the Zernike moments shape feature via the dissimilarity degree and the reconstruction ratio between the original image and the reconstructed image is proposed. The experiment results demonstrate the feasibility of this evaluation approach to image Zernike moments shape feature. 展开更多
关键词 feature evaluation Zernike moment image reconstruction reconstruction ratio
下载PDF
A new inversion method for reconstruction of plasmaspheric He^(+)density from EUV images 被引量:3
18
作者 Ya Huang Lei Dai +2 位作者 Chi Wang RongLan Xu Liang Li 《Earth and Planetary Physics》 CSCD 2021年第2期218-222,共5页
The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we... The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we apply the Algebraic Reconstruction Technique(ART)and the minimization of the image Total Variation(TV)method,with a combination of priori knowledge of north–south symmetry,to reconstruct plasmaspheric He+density from simulated EUV images.The results demonstrate that incorporating priori assumption can be particularly useful when the projection data is insufficient.This method has good performance even with a projection angle of less than 150 degrees.The method of our study is expected to have applications in the Soft X-ray Imager(SXI)reconstruction for the Solar wind–Magnetosphere–Ionosphere Link Explorer(SMILE)mission. 展开更多
关键词 Earth plasmasphere He+density algebraic reconstruction technique image total variation north–south symmetry SXI image reconstruction SMILE mission
下载PDF
Image reconstruction for cone-beam computed tomography using total p-variation plus Kullback-Leibler data divergence 被引量:1
19
作者 蔡爱龙 李磊 +4 位作者 王林元 闫镔 郑治中 张瀚铭 胡国恩 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期461-473,共13页
Accurate reconstruction from a reduced data set is highly essential for computed tomography in fast and/or low dose imaging applications. Conventional total variation(TV)-based algorithms apply the L1 norm-based pen... Accurate reconstruction from a reduced data set is highly essential for computed tomography in fast and/or low dose imaging applications. Conventional total variation(TV)-based algorithms apply the L1 norm-based penalties, which are not as efficient as Lp(0〈p〈1) quasi-norm-based penalties. TV with a p-th power-based norm can serve as a feasible alternative of the conventional TV, which is referred to as total p-variation(TpV). This paper proposes a TpV-based reconstruction model and develops an efficient algorithm. The total p-variation and Kullback-Leibler(KL) data divergence, which has better noise suppression capability compared with the often-used quadratic term, are combined to build the reconstruction model. The proposed algorithm is derived by the alternating direction method(ADM) which offers a stable, efficient, and easily coded implementation. We apply the proposed method in the reconstructions from very few views of projections(7 views evenly acquired within 180°). The images reconstructed by the new method show clearer edges and higher numerical accuracy than the conventional TV method. Both the simulations and real CT data experiments indicate that the proposed method may be promising for practical applications. 展开更多
关键词 image reconstruction total p-variation minimization Kullback-Leibler data divergence p-shrinkage mapping
下载PDF
Evolutionary Computation Based Optimization of Image Zernike Moments Shape Feature Vector 被引量:1
20
作者 LIU Maofu HU Hujun +2 位作者 ZHONG Ming HE Yanxiang HE Fazhi 《Wuhan University Journal of Natural Sciences》 CAS 2008年第2期153-158,共6页
The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the origin... The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the original image but has too many elements making trouble for the next image analysis phases. Then the low dimension image Zernike moments shape feature vector should be improved and optimized to describe more detail of the original image. So the optimization algorithm based on evolutionary computation is designed and implemented in this paper to solve this problem. The experimental results demonstrate the feasibility of the optimization algorithm. 展开更多
关键词 Zernike moment image Zernike moments shape feature vector image reconstruction evolutionary computation
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部