Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep...Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.展开更多
The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor l...The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.展开更多
Deep convolutional neural networks(DCNNs)are widely used in content-based image retrieval(CBIR)because of the advantages in image feature extraction.However,the training of deep neural networks requires a large number...Deep convolutional neural networks(DCNNs)are widely used in content-based image retrieval(CBIR)because of the advantages in image feature extraction.However,the training of deep neural networks requires a large number of labeled data,which limits the application.Self-supervised learning is a more general approach in unlabeled scenarios.A method of fine-tuning feature extraction networks based on masked learning is proposed.Masked autoencoders(MAE)are used in the fine-tune vision transformer(ViT)model.In addition,the scheme of extracting image descriptors is discussed.The encoder of the MAE uses the ViT to extract global features and performs self-supervised fine-tuning by reconstructing masked area pixels.The method works well on category-level image retrieval datasets with marked improvements in instance-level datasets.For the instance-level datasets Oxford5k and Paris6k,the retrieval accuracy of the base model is improved by 7%and 17%compared to that of the original model,respectively.展开更多
The demand for image retrieval with text manipulation exists in many fields, such as e-commerce and Internet search. Deep metric learning methods are used by most researchers to calculate the similarity between the qu...The demand for image retrieval with text manipulation exists in many fields, such as e-commerce and Internet search. Deep metric learning methods are used by most researchers to calculate the similarity between the query and the candidate image by fusing the global feature of the query image and the text feature. However, the text usually corresponds to the local feature of the query image rather than the global feature. Therefore, in this paper, we propose a framework of image retrieval with text manipulation by local feature modification(LFM-IR) which can focus on the related image regions and attributes and perform modification. A spatial attention module and a channel attention module are designed to realize the semantic mapping between image and text. We achieve excellent performance on three benchmark datasets, namely Color-Shape-Size(CSS), Massachusetts Institute of Technology(MIT) States and Fashion200K(+8.3%, +0.7% and +4.6% in R@1).展开更多
Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scal...Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scales.A cul-tural heritage image is one of thefine-grained images because each image has the same similarity in most cases.Using the classification technique,distinguishing cultural heritage architecture may be difficult.This study proposes a cultural heri-tage content retrieval method using adaptive deep learning forfine-grained image retrieval.The key contribution of this research was the creation of a retrieval mod-el that could handle incremental streams of new categories while maintaining its past performance in old categories and not losing the old categorization of a cul-tural heritage image.The goal of the proposed method is to perform a retrieval task for classes.Incremental learning for new classes was conducted to reduce the re-training process.In this step,the original class is not necessary for re-train-ing which we call an adaptive deep learning technique.Cultural heritage in the case of Thai archaeological site architecture was retrieved through machine learn-ing and image processing.We analyze the experimental results of incremental learning forfine-grained images with images of Thai archaeological site architec-ture from world heritage provinces in Thailand,which have a similar architecture.Using afine-grained image retrieval technique for this group of cultural heritage images in a database can solve the problem of a high degree of similarity among categories and a high degree of dissimilarity for a specific category.The proposed method for retrieving the correct image from a database can deliver an average accuracy of 85 percent.Adaptive deep learning forfine-grained image retrieval was used to retrieve cultural heritage content,and it outperformed state-of-the-art methods infine-grained image retrieval.展开更多
Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wi...Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wise label similarity is used tofind the matching images from the database.But this method lacks of limited propose code and weak execution of misclassified images.In order to get-rid of the above problem,a novel triplet based label that incorporates context-spatial similarity measure is proposed.A Point Attention Based Triplet Network(PABTN)is introduced to study propose code that gives maximum discriminative ability.To improve the performance of ranking,a corre-lating resolutions for the classification,triplet labels based onfindings,a spatial-attention mechanism and Region Of Interest(ROI)and small trial information loss containing a new triplet cross-entropy loss are used.From the experimental results,it is shown that the proposed technique exhibits better results in terms of mean Reciprocal Rank(mRR)and mean Average Precision(mAP)in the CIFAR-10 and NUS-WIPE datasets.展开更多
The exponential increase in data over the past fewyears,particularly in images,has led to more complex content since visual representation became the new norm.E-commerce and similar platforms maintain large image cata...The exponential increase in data over the past fewyears,particularly in images,has led to more complex content since visual representation became the new norm.E-commerce and similar platforms maintain large image catalogues of their products.In image databases,searching and retrieving similar images is still a challenge,even though several image retrieval techniques have been proposed over the decade.Most of these techniques work well when querying general image databases.However,they often fail in domain-specific image databases,especially for datasets with low intraclass variance.This paper proposes a domain-specific image similarity search engine based on a fused deep learning network.The network is comprised of an improved object localization module,a classification module to narrow down search options and finally a feature extraction and similarity calculation module.The network features both an offline stage for indexing the dataset and an online stage for querying.The dataset used to evaluate the performance of the proposed network is a custom domain-specific dataset related to cosmetics packaging gathered from various online platforms.The proposed method addresses the intraclass variance problem with more precise object localization and the introduction of top result reranking based on object contours.Finally,quantitative and qualitative experiment results are presented,showing improved image similarity search performance.展开更多
The utilization of digital picture search and retrieval has grown substantially in numerous fields for different purposes during the last decade,owing to the continuing advances in image processing and computer vision...The utilization of digital picture search and retrieval has grown substantially in numerous fields for different purposes during the last decade,owing to the continuing advances in image processing and computer vision approaches.In multiple real-life applications,for example,social media,content-based face picture retrieval is a well-invested technique for large-scale databases,where there is a significant necessity for reliable retrieval capabilities enabling quick search in a vast number of pictures.Humans widely employ faces for recognizing and identifying people.Thus,face recognition through formal or personal pictures is increasingly used in various real-life applications,such as helping crime investigators retrieve matching images from face image databases to identify victims and criminals.However,such face image retrieval becomes more challenging in large-scale databases,where traditional vision-based face analysis requires ample additional storage space than the raw face images already occupied to store extracted lengthy feature vectors and takes much longer to process and match thousands of face images.This work mainly contributes to enhancing face image retrieval performance in large-scale databases using hash codes inferred by locality-sensitive hashing(LSH)for facial hard and soft biometrics as(Hard BioHash)and(Soft BioHash),respectively,to be used as a search input for retrieving the top-k matching faces.Moreover,we propose the multi-biometric score-level fusion of both face hard and soft BioHashes(Hard-Soft BioHash Fusion)for further augmented face image retrieval.The experimental outcomes applied on the Labeled Faces in the Wild(LFW)dataset and the related attributes dataset(LFW-attributes),demonstrate that the retrieval performance of the suggested fusion approach(Hard-Soft BioHash Fusion)significantly improved the retrieval performance compared to solely using Hard BioHash or Soft BioHash in isolation,where the suggested method provides an augmented accuracy of 87%when executed on 1000 specimens and 77%on 5743 samples.These results remarkably outperform the results of the Hard BioHash method by(50%on the 1000 samples and 30%on the 5743 samples),and the Soft BioHash method by(78%on the 1000 samples and 63%on the 5743 samples).展开更多
Given one specific image,it would be quite significant if humanity could simply retrieve all those pictures that fall into a similar category of images.However,traditional methods are inclined to achieve high-quality ...Given one specific image,it would be quite significant if humanity could simply retrieve all those pictures that fall into a similar category of images.However,traditional methods are inclined to achieve high-quality retrieval by utilizing adequate learning instances,ignoring the extraction of the image’s essential information which leads to difficulty in the retrieval of similar category images just using one reference image.Aiming to solve this problem above,we proposed in this paper one refined sparse representation based similar category image retrieval model.On the one hand,saliency detection and multi-level decomposition could contribute to taking salient and spatial information into consideration more fully in the future.On the other hand,the cross mutual sparse coding model aims to extract the image’s essential feature to the maximumextent possible.At last,we set up a database concluding a large number of multi-source images.Adequate groups of comparative experiments show that our method could contribute to retrieving similar category images effectively.Moreover,adequate groups of ablation experiments show that nearly all procedures play their roles,respectively.展开更多
Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image.The key objective is to learn discriminative fin...Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image.The key objective is to learn discriminative fine-grained features by training deep models such that similar images are clustered,and dissimilar images are separated in the low embedding space.Previous works primarily focused on defining local structure loss functions like triplet loss,pairwise loss,etc.However,training via these approaches takes a long training time,and they have poor accuracy.Additionally,representations learned through it tend to tighten up in the embedded space and lose generalizability to unseen classes.This paper proposes a noise-assisted representation learning method for fine-grained image retrieval to mitigate these issues.In the proposed work,class manifold learning is performed in which positive pairs are created with noise insertion operation instead of tightening class clusters.And other instances are treated as negatives within the same cluster.Then a loss function is defined to penalize when the distance between instances of the same class becomes too small relative to the noise pair in that class in embedded space.The proposed approach is validated on CARS-196 and CUB-200 datasets and achieved better retrieval results(85.38%recall@1 for CARS-196%and 70.13%recall@1 for CUB-200)compared to other existing methods.展开更多
To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep ha...To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep hashing-based secure image retrieval technique that extracts more expressive image features and constructs a secure,searchable encryption scheme.First,a deep learning framework based on residual network and transfer learn-ing model is designed to extract more representative image deep features.Secondly,the central similarity is used to quantify and construct the deep hash sequence of features.The Paillier homomorphic encryption encrypts the deep hash sequence to build a high-security and low-complexity searchable index.Finally,according to the additive homomorphic property of Paillier homomorphic encryption,a similarity measurement method suitable for com-puting in the retrieval system’s security is ensured by the encrypted domain.The experimental results,which were obtained on Web Image Database from the National University of Singapore(NUS-WIDE),Microsoft Common Objects in Context(MS COCO),and ImageNet data sets,demonstrate the system’s robust security and precise retrieval,the proposed scheme can achieve efficient image retrieval without revealing user privacy.The retrieval accuracy is improved by at least 37%compared to traditional hashing schemes.At the same time,the retrieval time is saved by at least 9.7%compared to the latest deep hashing schemes.展开更多
In existing remote sensing image retrieval(RSIR)datasets,the number of images among different classes varies dramatically,which leads to a severe class imbalance problem.Some studies propose to train the model with th...In existing remote sensing image retrieval(RSIR)datasets,the number of images among different classes varies dramatically,which leads to a severe class imbalance problem.Some studies propose to train the model with the ranking‐based metric(e.g.,average precision[AP]),because AP is robust to class imbalance.However,current AP‐based methods overlook an important issue:only optimising samples ranking before each positive sample,which is limited by the definition of AP and is prone to local optimum.To achieve global optimisation of AP,a novel method,namely Optimising Samples after positive ones&AP loss(OSAP‐Loss)is proposed in this study.Specifically,a novel superior ranking function is designed to make the AP loss differentiable while providing a tighter upper bound.Then,a novel loss called Optimising Samples after Positive ones(OSP)loss is proposed to involve all positive and negative samples ranking after each positive one and to provide a more flexible optimisation strategy for each sample.Finally,a graphics processing unit memory‐free mechanism is developed to thoroughly address the non‐decomposability of AP optimisation.Extensive experimental results on RSIR as well as conventional image retrieval datasets show the superiority and competitive performance of OSAP‐Loss compared to the state‐of‐the‐art.展开更多
Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and elect...Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and electronic patient records.Several methods are applied to enhance the retrieval performance of CBMIR systems.Developing new and effective similarity measure and features fusion methods are two of the most powerful and effective strategies for improving these systems.This study proposes the relative difference-based similarity measure(RDBSM)for CBMIR.The new measure was first used in the similarity calculation stage for the CBMIR using an unweighted fusion method of traditional color and texture features.Furthermore,the study also proposes a weighted fusion method for medical image features extracted using pre-trained convolutional neural networks(CNNs)models.Our proposed RDBSM has outperformed the standard well-known similarity and distance measures using two popular medical image datasets,Kvasir and PH2,in terms of recall and precision retrieval measures.The effectiveness and quality of our proposed similarity measure are also proved using a significant test and statistical confidence bound.展开更多
Establishing a system for measuring plant health and bacterial infection is critical in agriculture.Previously,the farmers themselves,who observed them with their eyes and relied on their experience in analysis,which ...Establishing a system for measuring plant health and bacterial infection is critical in agriculture.Previously,the farmers themselves,who observed them with their eyes and relied on their experience in analysis,which could have been incorrect.Plant inspection can determine which plants reflect the quantity of green light and near-infrared using infrared light,both visible and eye using a drone.The goal of this study was to create algorithms for assessing bacterial infections in rice using images from unmanned aerial vehicles(UAVs)with an ensemble classification technique.Convolution neural networks in unmanned aerial vehi-cles image were used.To convey this interest,the rice’s health and bacterial infec-tion inside the photo were detected.The project entailed using pictures to identify bacterial illnesses in rice.The shape and distinct characteristics of each infection were observed.Rice symptoms were defined using machine learning and image processing techniques.Two steps of a convolution neural network based on an image from a UAV were used in this study to determine whether this area will be affected by bacteria.The proposed algorithms can be utilized to classify the types of rice deceases with an accuracy rate of 89.84 percent.展开更多
In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image ...In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image used in traditional image retrieval into multi query examples so as to include more image features related with semantics.Retrieving images for each of the multi query examples and integrating the retrieval results,more relevant images can be obtained.The property of the recall-precision curve of a general retrieval algorithm and the K-means clustering method are used to realize the expansion according to the distance of image features of the initially retrieved images.The experimental results demonstrate that the AMQE technology can greatly improve the recall and precision of the original algorithms.展开更多
Apricot has a long history of cultivation and has many varieties and types. The traditional variety identification methods are timeconsuming and labor-consuming, posing grand challenges to apricot resource management....Apricot has a long history of cultivation and has many varieties and types. The traditional variety identification methods are timeconsuming and labor-consuming, posing grand challenges to apricot resource management. Tool development in this regard will help researchers quickly identify variety information. This study photographed apricot fruits outdoors and indoors and constructed a dataset that can precisely classify the fruits using a U-net model (F-score:99%), which helps to obtain the fruit's size, shape, and color features. Meanwhile, a variety search engine was constructed, which can search and identify variety from the database according to the above features. Besides, a mobile and web application (ApricotView) was developed, and the construction mode can be also applied to other varieties of fruit trees.Additionally, we have collected four difficult-to-identify seed datasets and used the VGG16 model for training, with an accuracy of 97%, which provided an important basis for ApricotView. To address the difficulties in data collection bottlenecking apricot phenomics research, we developed the first apricot database platform of its kind (ApricotDIAP, http://apricotdiap.com/) to accumulate, manage, and publicize scientific data of apricot.展开更多
Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing me...Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing methods cannot recognize newly added attributes and may fail to capture region-level visual features.To address the aforementioned issues,a region-aware fashion contrastive language-image pre-training(RaF-CLIP)model was proposed.This model aligned cropped and segmented images with category and multiple fine-grained attribute texts,achieving the matching of fashion region and corresponding texts through contrastive learning.Clothing retrieval found suitable clothing based on the user-specified clothing categories and attributes,and to further improve the accuracy of retrieval,an attribute-guided composed network(AGCN)as an additional component on RaF-CLIP was introduced,specifically designed for composed image retrieval.This task aimed to modify the reference image based on textual expressions to retrieve the expected target.By adopting a transformer-based bidirectional attention and gating mechanism,it realized the fusion and selection of image features and attribute text features.Experimental results show that the proposed model achieves a mean precision of 0.6633 for attribute recognition tasks and a recall@10(recall@k is defined as the percentage of correct samples appearing in the top k retrieval results)of 39.18 for composed image retrieval task,satisfying user needs for freely searching for clothing through images and texts.展开更多
This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed ac...This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.展开更多
In order to overcome the disadvantages of color, shape and texture-based features definition for medical images, this paper defines a new kind of semantic feature and its extraction algorithm. We firstly use kernel de...In order to overcome the disadvantages of color, shape and texture-based features definition for medical images, this paper defines a new kind of semantic feature and its extraction algorithm. We firstly use kernel density estimation statistical model to describe the complicated medical image data, secondly, define some typical representative pixels of images as feature and finally, take hill-climbing strategy of Artificial Intelligence to extract those semantic features. Results of a content-based medial image retrieve system show that our semantic features have better distinguishing ability than those color, shape and texture-based features and can improve the ratios of recall and precision of this system smartly.展开更多
The traditional information hiding methods embed the secret information by modifying the carrier,which will inevitably leave traces of modification on the carrier.In this way,it is hard to resist the detection of steg...The traditional information hiding methods embed the secret information by modifying the carrier,which will inevitably leave traces of modification on the carrier.In this way,it is hard to resist the detection of steganalysis algorithm.To address this problem,the concept of coverless information hiding was proposed.Coverless information hiding can effectively resist steganalysis algorithm,since it uses unmodified natural stego-carriers to represent and convey confidential information.However,the state-of-the-arts method has a low hidden capacity,which makes it less appealing.Because the pixel values of different regions of the molecular structure images of material(MSIM)are usually different,this paper proposes a novel coverless information hiding method based on MSIM,which utilizes the average value of sub-image’s pixels to represent the secret information,according to the mapping between pixel value intervals and secret information.In addition,we employ a pseudo-random label sequence that is used to determine the position of sub-images to improve the security of the method.And the histogram of the Bag of words model(BOW)is used to determine the number of subimages in the image that convey secret information.Moreover,to improve the retrieval efficiency,we built a multi-level inverted index structure.Furthermore,the proposed method can also be used for other natural images.Compared with the state-of-the-arts,experimental results and analysis manifest that our method has better performance in anti-steganalysis,security and capacity.展开更多
文摘Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.
文摘The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.
基金the Project of Introducing Urgently Needed Talents in Key Supporting Regions of Shandong Province,China(No.SDJQP20221805)。
文摘Deep convolutional neural networks(DCNNs)are widely used in content-based image retrieval(CBIR)because of the advantages in image feature extraction.However,the training of deep neural networks requires a large number of labeled data,which limits the application.Self-supervised learning is a more general approach in unlabeled scenarios.A method of fine-tuning feature extraction networks based on masked learning is proposed.Masked autoencoders(MAE)are used in the fine-tune vision transformer(ViT)model.In addition,the scheme of extracting image descriptors is discussed.The encoder of the MAE uses the ViT to extract global features and performs self-supervised fine-tuning by reconstructing masked area pixels.The method works well on category-level image retrieval datasets with marked improvements in instance-level datasets.For the instance-level datasets Oxford5k and Paris6k,the retrieval accuracy of the base model is improved by 7%and 17%compared to that of the original model,respectively.
基金Foundation items:Shanghai Sailing Program,China (No. 21YF1401300)Shanghai Science and Technology Innovation Action Plan,China (No.19511101802)Fundamental Research Funds for the Central Universities,China (No.2232021D-25)。
文摘The demand for image retrieval with text manipulation exists in many fields, such as e-commerce and Internet search. Deep metric learning methods are used by most researchers to calculate the similarity between the query and the candidate image by fusing the global feature of the query image and the text feature. However, the text usually corresponds to the local feature of the query image rather than the global feature. Therefore, in this paper, we propose a framework of image retrieval with text manipulation by local feature modification(LFM-IR) which can focus on the related image regions and attributes and perform modification. A spatial attention module and a channel attention module are designed to realize the semantic mapping between image and text. We achieve excellent performance on three benchmark datasets, namely Color-Shape-Size(CSS), Massachusetts Institute of Technology(MIT) States and Fashion200K(+8.3%, +0.7% and +4.6% in R@1).
基金This research was funded by King Mongkut’s University of Technology North Bangkok(Contract no.KMUTNB-62-KNOW-026).
文摘Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scales.A cul-tural heritage image is one of thefine-grained images because each image has the same similarity in most cases.Using the classification technique,distinguishing cultural heritage architecture may be difficult.This study proposes a cultural heri-tage content retrieval method using adaptive deep learning forfine-grained image retrieval.The key contribution of this research was the creation of a retrieval mod-el that could handle incremental streams of new categories while maintaining its past performance in old categories and not losing the old categorization of a cul-tural heritage image.The goal of the proposed method is to perform a retrieval task for classes.Incremental learning for new classes was conducted to reduce the re-training process.In this step,the original class is not necessary for re-train-ing which we call an adaptive deep learning technique.Cultural heritage in the case of Thai archaeological site architecture was retrieved through machine learn-ing and image processing.We analyze the experimental results of incremental learning forfine-grained images with images of Thai archaeological site architec-ture from world heritage provinces in Thailand,which have a similar architecture.Using afine-grained image retrieval technique for this group of cultural heritage images in a database can solve the problem of a high degree of similarity among categories and a high degree of dissimilarity for a specific category.The proposed method for retrieving the correct image from a database can deliver an average accuracy of 85 percent.Adaptive deep learning forfine-grained image retrieval was used to retrieve cultural heritage content,and it outperformed state-of-the-art methods infine-grained image retrieval.
文摘Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wise label similarity is used tofind the matching images from the database.But this method lacks of limited propose code and weak execution of misclassified images.In order to get-rid of the above problem,a novel triplet based label that incorporates context-spatial similarity measure is proposed.A Point Attention Based Triplet Network(PABTN)is introduced to study propose code that gives maximum discriminative ability.To improve the performance of ranking,a corre-lating resolutions for the classification,triplet labels based onfindings,a spatial-attention mechanism and Region Of Interest(ROI)and small trial information loss containing a new triplet cross-entropy loss are used.From the experimental results,it is shown that the proposed technique exhibits better results in terms of mean Reciprocal Rank(mRR)and mean Average Precision(mAP)in the CIFAR-10 and NUS-WIPE datasets.
文摘The exponential increase in data over the past fewyears,particularly in images,has led to more complex content since visual representation became the new norm.E-commerce and similar platforms maintain large image catalogues of their products.In image databases,searching and retrieving similar images is still a challenge,even though several image retrieval techniques have been proposed over the decade.Most of these techniques work well when querying general image databases.However,they often fail in domain-specific image databases,especially for datasets with low intraclass variance.This paper proposes a domain-specific image similarity search engine based on a fused deep learning network.The network is comprised of an improved object localization module,a classification module to narrow down search options and finally a feature extraction and similarity calculation module.The network features both an offline stage for indexing the dataset and an online stage for querying.The dataset used to evaluate the performance of the proposed network is a custom domain-specific dataset related to cosmetics packaging gathered from various online platforms.The proposed method addresses the intraclass variance problem with more precise object localization and the introduction of top result reranking based on object contours.Finally,quantitative and qualitative experiment results are presented,showing improved image similarity search performance.
基金supported and funded by KAU Scientific Endowment,King Abdulaziz University,Jeddah,Saudi Arabia,grant number 077416-04.
文摘The utilization of digital picture search and retrieval has grown substantially in numerous fields for different purposes during the last decade,owing to the continuing advances in image processing and computer vision approaches.In multiple real-life applications,for example,social media,content-based face picture retrieval is a well-invested technique for large-scale databases,where there is a significant necessity for reliable retrieval capabilities enabling quick search in a vast number of pictures.Humans widely employ faces for recognizing and identifying people.Thus,face recognition through formal or personal pictures is increasingly used in various real-life applications,such as helping crime investigators retrieve matching images from face image databases to identify victims and criminals.However,such face image retrieval becomes more challenging in large-scale databases,where traditional vision-based face analysis requires ample additional storage space than the raw face images already occupied to store extracted lengthy feature vectors and takes much longer to process and match thousands of face images.This work mainly contributes to enhancing face image retrieval performance in large-scale databases using hash codes inferred by locality-sensitive hashing(LSH)for facial hard and soft biometrics as(Hard BioHash)and(Soft BioHash),respectively,to be used as a search input for retrieving the top-k matching faces.Moreover,we propose the multi-biometric score-level fusion of both face hard and soft BioHashes(Hard-Soft BioHash Fusion)for further augmented face image retrieval.The experimental outcomes applied on the Labeled Faces in the Wild(LFW)dataset and the related attributes dataset(LFW-attributes),demonstrate that the retrieval performance of the suggested fusion approach(Hard-Soft BioHash Fusion)significantly improved the retrieval performance compared to solely using Hard BioHash or Soft BioHash in isolation,where the suggested method provides an augmented accuracy of 87%when executed on 1000 specimens and 77%on 5743 samples.These results remarkably outperform the results of the Hard BioHash method by(50%on the 1000 samples and 30%on the 5743 samples),and the Soft BioHash method by(78%on the 1000 samples and 63%on the 5743 samples).
基金sponsored by the National Natural Science Foundation of China(Grants:62002200,61772319)Shandong Natural Science Foundation of China(Grant:ZR2020QF012).
文摘Given one specific image,it would be quite significant if humanity could simply retrieve all those pictures that fall into a similar category of images.However,traditional methods are inclined to achieve high-quality retrieval by utilizing adequate learning instances,ignoring the extraction of the image’s essential information which leads to difficulty in the retrieval of similar category images just using one reference image.Aiming to solve this problem above,we proposed in this paper one refined sparse representation based similar category image retrieval model.On the one hand,saliency detection and multi-level decomposition could contribute to taking salient and spatial information into consideration more fully in the future.On the other hand,the cross mutual sparse coding model aims to extract the image’s essential feature to the maximumextent possible.At last,we set up a database concluding a large number of multi-source images.Adequate groups of comparative experiments show that our method could contribute to retrieving similar category images effectively.Moreover,adequate groups of ablation experiments show that nearly all procedures play their roles,respectively.
文摘Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image.The key objective is to learn discriminative fine-grained features by training deep models such that similar images are clustered,and dissimilar images are separated in the low embedding space.Previous works primarily focused on defining local structure loss functions like triplet loss,pairwise loss,etc.However,training via these approaches takes a long training time,and they have poor accuracy.Additionally,representations learned through it tend to tighten up in the embedded space and lose generalizability to unseen classes.This paper proposes a noise-assisted representation learning method for fine-grained image retrieval to mitigate these issues.In the proposed work,class manifold learning is performed in which positive pairs are created with noise insertion operation instead of tightening class clusters.And other instances are treated as negatives within the same cluster.Then a loss function is defined to penalize when the distance between instances of the same class becomes too small relative to the noise pair in that class in embedded space.The proposed approach is validated on CARS-196 and CUB-200 datasets and achieved better retrieval results(85.38%recall@1 for CARS-196%and 70.13%recall@1 for CUB-200)compared to other existing methods.
基金supported by the National Natural Science Foundation of China(No.61862041).
文摘To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep hashing-based secure image retrieval technique that extracts more expressive image features and constructs a secure,searchable encryption scheme.First,a deep learning framework based on residual network and transfer learn-ing model is designed to extract more representative image deep features.Secondly,the central similarity is used to quantify and construct the deep hash sequence of features.The Paillier homomorphic encryption encrypts the deep hash sequence to build a high-security and low-complexity searchable index.Finally,according to the additive homomorphic property of Paillier homomorphic encryption,a similarity measurement method suitable for com-puting in the retrieval system’s security is ensured by the encrypted domain.The experimental results,which were obtained on Web Image Database from the National University of Singapore(NUS-WIDE),Microsoft Common Objects in Context(MS COCO),and ImageNet data sets,demonstrate the system’s robust security and precise retrieval,the proposed scheme can achieve efficient image retrieval without revealing user privacy.The retrieval accuracy is improved by at least 37%compared to traditional hashing schemes.At the same time,the retrieval time is saved by at least 9.7%compared to the latest deep hashing schemes.
基金supported by the National Nature Science Foundation of China(No.U1803262,62176191,62171325)Nature Science Foundation of Hubei Province(2022CFB018)financially supported by fund from Hubei Province Key Laboratory of Intelligent Information Processing and Real‐time Industrial System(Wuhan University of Science and Technology)(ZNXX2022001).
文摘In existing remote sensing image retrieval(RSIR)datasets,the number of images among different classes varies dramatically,which leads to a severe class imbalance problem.Some studies propose to train the model with the ranking‐based metric(e.g.,average precision[AP]),because AP is robust to class imbalance.However,current AP‐based methods overlook an important issue:only optimising samples ranking before each positive sample,which is limited by the definition of AP and is prone to local optimum.To achieve global optimisation of AP,a novel method,namely Optimising Samples after positive ones&AP loss(OSAP‐Loss)is proposed in this study.Specifically,a novel superior ranking function is designed to make the AP loss differentiable while providing a tighter upper bound.Then,a novel loss called Optimising Samples after Positive ones(OSP)loss is proposed to involve all positive and negative samples ranking after each positive one and to provide a more flexible optimisation strategy for each sample.Finally,a graphics processing unit memory‐free mechanism is developed to thoroughly address the non‐decomposability of AP optimisation.Extensive experimental results on RSIR as well as conventional image retrieval datasets show the superiority and competitive performance of OSAP‐Loss compared to the state‐of‐the‐art.
基金funded by the Deanship of Scientific Research (DSR)at King Abdulaziz University,Jeddah,Saudi Arabia,Under Grant No. (G:146-830-1441).
文摘Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and electronic patient records.Several methods are applied to enhance the retrieval performance of CBMIR systems.Developing new and effective similarity measure and features fusion methods are two of the most powerful and effective strategies for improving these systems.This study proposes the relative difference-based similarity measure(RDBSM)for CBMIR.The new measure was first used in the similarity calculation stage for the CBMIR using an unweighted fusion method of traditional color and texture features.Furthermore,the study also proposes a weighted fusion method for medical image features extracted using pre-trained convolutional neural networks(CNNs)models.Our proposed RDBSM has outperformed the standard well-known similarity and distance measures using two popular medical image datasets,Kvasir and PH2,in terms of recall and precision retrieval measures.The effectiveness and quality of our proposed similarity measure are also proved using a significant test and statistical confidence bound.
基金funded by King Mongkut’s University of Technology North Bangkok(Contract no.KMUTNB-63-KNOW-044).
文摘Establishing a system for measuring plant health and bacterial infection is critical in agriculture.Previously,the farmers themselves,who observed them with their eyes and relied on their experience in analysis,which could have been incorrect.Plant inspection can determine which plants reflect the quantity of green light and near-infrared using infrared light,both visible and eye using a drone.The goal of this study was to create algorithms for assessing bacterial infections in rice using images from unmanned aerial vehicles(UAVs)with an ensemble classification technique.Convolution neural networks in unmanned aerial vehi-cles image were used.To convey this interest,the rice’s health and bacterial infec-tion inside the photo were detected.The project entailed using pictures to identify bacterial illnesses in rice.The shape and distinct characteristics of each infection were observed.Rice symptoms were defined using machine learning and image processing techniques.Two steps of a convolution neural network based on an image from a UAV were used in this study to determine whether this area will be affected by bacteria.The proposed algorithms can be utilized to classify the types of rice deceases with an accuracy rate of 89.84 percent.
基金The National High Technology Research and Develop-ment Program of China (863 Program) (No.2002AA413420).
文摘In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image used in traditional image retrieval into multi query examples so as to include more image features related with semantics.Retrieving images for each of the multi query examples and integrating the retrieval results,more relevant images can be obtained.The property of the recall-precision curve of a general retrieval algorithm and the K-means clustering method are used to realize the expansion according to the distance of image features of the initially retrieved images.The experimental results demonstrate that the AMQE technology can greatly improve the recall and precision of the original algorithms.
基金supported by the Fundamental Research Funds for the Central Non-profit Research Institution of the Chinese Academy of Forestry (Grant No.CAFYBB2020ZY003)the Key S&T Project of Inner Mongolia (Grant No.2021ZD0041-001-002)the Central Public-interest Scientific Institution Basal Research Fund (Grant No.11024316000202300001)。
文摘Apricot has a long history of cultivation and has many varieties and types. The traditional variety identification methods are timeconsuming and labor-consuming, posing grand challenges to apricot resource management. Tool development in this regard will help researchers quickly identify variety information. This study photographed apricot fruits outdoors and indoors and constructed a dataset that can precisely classify the fruits using a U-net model (F-score:99%), which helps to obtain the fruit's size, shape, and color features. Meanwhile, a variety search engine was constructed, which can search and identify variety from the database according to the above features. Besides, a mobile and web application (ApricotView) was developed, and the construction mode can be also applied to other varieties of fruit trees.Additionally, we have collected four difficult-to-identify seed datasets and used the VGG16 model for training, with an accuracy of 97%, which provided an important basis for ApricotView. To address the difficulties in data collection bottlenecking apricot phenomics research, we developed the first apricot database platform of its kind (ApricotDIAP, http://apricotdiap.com/) to accumulate, manage, and publicize scientific data of apricot.
基金National Natural Science Foundation of China(No.61971121)。
文摘Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing methods cannot recognize newly added attributes and may fail to capture region-level visual features.To address the aforementioned issues,a region-aware fashion contrastive language-image pre-training(RaF-CLIP)model was proposed.This model aligned cropped and segmented images with category and multiple fine-grained attribute texts,achieving the matching of fashion region and corresponding texts through contrastive learning.Clothing retrieval found suitable clothing based on the user-specified clothing categories and attributes,and to further improve the accuracy of retrieval,an attribute-guided composed network(AGCN)as an additional component on RaF-CLIP was introduced,specifically designed for composed image retrieval.This task aimed to modify the reference image based on textual expressions to retrieve the expected target.By adopting a transformer-based bidirectional attention and gating mechanism,it realized the fusion and selection of image features and attribute text features.Experimental results show that the proposed model achieves a mean precision of 0.6633 for attribute recognition tasks and a recall@10(recall@k is defined as the percentage of correct samples appearing in the top k retrieval results)of 39.18 for composed image retrieval task,satisfying user needs for freely searching for clothing through images and texts.
文摘This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.
基金Supported by the National Natural Science Foun-dation of China(60572112) the Jiangsu High Education Natural Sci-ence Research Project (03KJD51002) the Fourth Group StudentResearch Project of Jiangsu University.
文摘In order to overcome the disadvantages of color, shape and texture-based features definition for medical images, this paper defines a new kind of semantic feature and its extraction algorithm. We firstly use kernel density estimation statistical model to describe the complicated medical image data, secondly, define some typical representative pixels of images as feature and finally, take hill-climbing strategy of Artificial Intelligence to extract those semantic features. Results of a content-based medial image retrieve system show that our semantic features have better distinguishing ability than those color, shape and texture-based features and can improve the ratios of recall and precision of this system smartly.
基金This work is supported,in part,by the National Natural Science Foundation of China under grant numbers U1536206,U1405254,61772283,61602253,61672294,61502242in part,by the Jiangsu Basic Research Programs-Natural Science Foundation under grant numbers BK20150925 and BK20151530+1 种基金in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fundin part,by the Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET)fund,China.
文摘The traditional information hiding methods embed the secret information by modifying the carrier,which will inevitably leave traces of modification on the carrier.In this way,it is hard to resist the detection of steganalysis algorithm.To address this problem,the concept of coverless information hiding was proposed.Coverless information hiding can effectively resist steganalysis algorithm,since it uses unmodified natural stego-carriers to represent and convey confidential information.However,the state-of-the-arts method has a low hidden capacity,which makes it less appealing.Because the pixel values of different regions of the molecular structure images of material(MSIM)are usually different,this paper proposes a novel coverless information hiding method based on MSIM,which utilizes the average value of sub-image’s pixels to represent the secret information,according to the mapping between pixel value intervals and secret information.In addition,we employ a pseudo-random label sequence that is used to determine the position of sub-images to improve the security of the method.And the histogram of the Bag of words model(BOW)is used to determine the number of subimages in the image that convey secret information.Moreover,to improve the retrieval efficiency,we built a multi-level inverted index structure.Furthermore,the proposed method can also be used for other natural images.Compared with the state-of-the-arts,experimental results and analysis manifest that our method has better performance in anti-steganalysis,security and capacity.