A novel reference-driven method for MR image reconstruction based on wavelet sparsity and nonlocal total variation(NLTV)is proposed.Utilizing the sparsity of the difference image between the target image and the mot...A novel reference-driven method for MR image reconstruction based on wavelet sparsity and nonlocal total variation(NLTV)is proposed.Utilizing the sparsity of the difference image between the target image and the motion-compensated reference image in wavelet transform domain,the proposed method does not need to estimate contrast changes and therefore increases computational efficiency.Additionally,NLTV regularization is applied to preserve image details and features without blocky effects.An efficient alternating iterative algorithm is used to estimate motion effects and reconstruct the difference image.Experimental results demonstrate that the proposed method can significantly reduce sampling rate or improve the quality of the reconstructed image alternatively.展开更多
The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we...The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we apply the Algebraic Reconstruction Technique(ART)and the minimization of the image Total Variation(TV)method,with a combination of priori knowledge of north–south symmetry,to reconstruct plasmaspheric He+density from simulated EUV images.The results demonstrate that incorporating priori assumption can be particularly useful when the projection data is insufficient.This method has good performance even with a projection angle of less than 150 degrees.The method of our study is expected to have applications in the Soft X-ray Imager(SXI)reconstruction for the Solar wind–Magnetosphere–Ionosphere Link Explorer(SMILE)mission.展开更多
In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal fu...In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal function such that the closed form solutions of the subproblem can be easily derived.In the subproblem, we apply a variable stepsize, that is like Barzilai-Borwein stepsize, to accelerate the algorithm. Numerical results with parallel magnetic resonance imaging demonstrate the efficiency of the proposed algorithm.展开更多
基金Supported by the National Natural Science Foundation of China(61077022)
文摘A novel reference-driven method for MR image reconstruction based on wavelet sparsity and nonlocal total variation(NLTV)is proposed.Utilizing the sparsity of the difference image between the target image and the motion-compensated reference image in wavelet transform domain,the proposed method does not need to estimate contrast changes and therefore increases computational efficiency.Additionally,NLTV regularization is applied to preserve image details and features without blocky effects.An efficient alternating iterative algorithm is used to estimate motion effects and reconstruct the difference image.Experimental results demonstrate that the proposed method can significantly reduce sampling rate or improve the quality of the reconstructed image alternatively.
基金supported by the National Natural Science Foundation of China(Grant Nos.41904148,41731070,41874175)in part by the Strategic Priority Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15017000,XDA15350201,XDA15052500).
文摘The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we apply the Algebraic Reconstruction Technique(ART)and the minimization of the image Total Variation(TV)method,with a combination of priori knowledge of north–south symmetry,to reconstruct plasmaspheric He+density from simulated EUV images.The results demonstrate that incorporating priori assumption can be particularly useful when the projection data is insufficient.This method has good performance even with a projection angle of less than 150 degrees.The method of our study is expected to have applications in the Soft X-ray Imager(SXI)reconstruction for the Solar wind–Magnetosphere–Ionosphere Link Explorer(SMILE)mission.
基金supported in part by the National Natural Science Foundation of China(11361018,11461015)Guangxi Natural Science Foundation(2014GXNSFFA118001)+3 种基金Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ15112,YQ16112)Guilin Science and Technology Project(20140127-2)the Innovation Project of Guangxi Graduate Education and Innovation Project of GUET Graduate Education(YJCXB201502)Guangxi Key Laboratory of Cryptography and Information Security(GCIS201624)
文摘In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal function such that the closed form solutions of the subproblem can be easily derived.In the subproblem, we apply a variable stepsize, that is like Barzilai-Borwein stepsize, to accelerate the algorithm. Numerical results with parallel magnetic resonance imaging demonstrate the efficiency of the proposed algorithm.