Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image qual...Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image quality of handheld ultrasound devices is not always satisfactory due to the limited equipment size,which hinders accurate diagnoses by doctors.At the same time,paired ultrasound images are difficult to obtain from the clinic because imaging process is complicated.Therefore,we propose a modified cycle generative adversarial network(cycleGAN) for ultrasound image enhancement from multiple organs via unpaired pre-training.We introduce an ultrasound image pre-training method that does not require paired images,alleviating the requirement for large-scale paired datasets.We also propose an enhanced block with different structures in the pre-training and fine-tuning phases,which can help achieve the goals of different training phases.To improve the robustness of the model,we add Gaussian noise to the training images as data augmentation.Our approach is effective in obtaining the best quantitative evaluation results using a small number of parameters and less training costs to improve the quality of handheld ultrasound devices.展开更多
Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such...Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction.However,because of the diversity in the shapes and sizes of tables,existing table detection methods adapted from general object detection algorithms,have not yet achieved satisfactory results.Incorrect detection results might lead to the loss of critical information.Methods Therefore,we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections.To better deal with table areas of different shapes and sizes,we added a dual-branch context content attention module(DCCAM)to high-dimensional features to extract context content information,thereby enhancing the network's ability to learn shape features.For feature fusion at different scales,we replaced the original 3×3 convolution with a multilayer residual module,which contains enhanced gradient flow information to improve the feature representation and extraction capability.Results We evaluated our method on public document datasets and compared it with previous methods,which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score.展开更多
Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following ...Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.展开更多
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne...A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.展开更多
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph...Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.展开更多
Dear Editor,This letter proposes to integrate dendritic learnable network architecture with Vision Transformer to improve the accuracy of image recognition.In this study,based on the theory of dendritic neurons in neu...Dear Editor,This letter proposes to integrate dendritic learnable network architecture with Vision Transformer to improve the accuracy of image recognition.In this study,based on the theory of dendritic neurons in neuroscience,we design a network that is more practical for engineering to classify visual features.Based on this,we propose a dendritic learning-incorporated vision Transformer(DVT),which out-performs other state-of-the-art methods on three image recognition benchmarks.展开更多
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese...The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.展开更多
Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but...Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.展开更多
Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof...Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.展开更多
BACKGROUND Stroke is a common disabling disease,whether it is ischemic stroke or hemorrhagic stroke,both can result in neuronal damage,leading to various manifestations of neurological dysfunction.AIM To explore of th...BACKGROUND Stroke is a common disabling disease,whether it is ischemic stroke or hemorrhagic stroke,both can result in neuronal damage,leading to various manifestations of neurological dysfunction.AIM To explore of the application value of swallowing treatment device combined with swallowing rehabilitation training in the treatment of swallowing disorders after stroke.METHODS This study selected 86 patients with swallowing disorders after stroke admitted to our rehabilitation department from February 2022 to December 2023 as research subjects.They were divided into a control group(n=43)and an observation group(n=43)according to the treatment.The control group received swallowing rehabilitation training,while the observation group received swallowing treatment device in addition to the training.Both groups underwent continuous intervention for two courses of treatment.RESULTS The total effective rate in the observation group(93.02%)was higher than that in the control group(76.74%)(P=0.035).After intervention,the oral transit time,swallowing response time,pharyngeal transit time,and laryngeal closure time decreased in both groups compared to before intervention.In the observation group,the oral transit time,swallowing response time,and pharyngeal transit time were shorter than those in the control group after intervention.However,the laryngeal closure time after intervention in the observation group was compared with that in the control group(P=0.142).After intervention,average amplitude value and duration of the genioglossus muscle group during empty swallowing and swallowing 5 mL of water are reduced compared to before intervention in both groups.After intervention,the scores of the chin-tuck swallowing exercise and the Standardized Swallowing Assessment are both reduced compared to pre-intervention levels in both groups.However,the observation group scores lower than the control group after intervention.Additionally,the Functional Oral Intake Scale scores of both groups are increased after intervention compared to pre-intervention levels,with the observation group scoring higher than the control group after intervention(P<0.001).The cumulative incidence of complications in the observation group is 9.30%,which is lower than the 27.91%in the control group(P=0.027).CONCLUSION The combination of swallowing therapy equipment with swallowing rehabilitation training can improve the muscle movement level of the genioglossus muscle group,enhance swallowing function,and prevent the occurrence of swallowing-related complications after stroke.展开更多
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ...Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.展开更多
Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images ha...Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images have a large amount of low-quality data,which seriously affects the performance of segmentationmethods.Therefore,this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network(RCNN).First,the rough-set-based feature discretization module is designed to preprocess the input data.Second,a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable the model to adaptively select important information for fusion.Finally,the refinement module for enhancing the extraction power of multi-scale information is added to improve the edge accuracy in segmentation.RCNN is compared with CE-Net and MultiResUNet on 83 gold standard 3D retinal OCT data samples.The average dice similarly coefficient(DSC)obtained by RCNN is 6%higher than that of CE-Net.The average 95 percent Hausdorff distance(95HD)and average symmetric surface distance(ASD)obtained by RCNN are 32.4%and 33.3%lower than those of MultiResUNet,respectively.We also evaluate the effect of feature discretization,as well as analyze the initial learning rate of RCNN and conduct ablation experiments with the four different models.The experimental results indicate that our method can improve the segmentation accuracy of OCT fundus images,providing strong support for its application in medical image watermarking.展开更多
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp...Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.展开更多
To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed...To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.展开更多
Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona...Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.展开更多
In today’s society, the incidence of cardiopulmonary diseases is increasing annually, seriously affecting patients’ quality of life. Therefore, developing a scientific and effective rehabilitation training program i...In today’s society, the incidence of cardiopulmonary diseases is increasing annually, seriously affecting patients’ quality of life. Therefore, developing a scientific and effective rehabilitation training program is of great significance. This study first analyzes the theoretical basis of cardiopulmonary rehabilitation training, including the effects of aerobic exercise, interval training, and strength training on cardiopulmonary function. Based on this, a comprehensive rehabilitation training program is designed, which includes personalized training plans, comprehensive interventions, multidisciplinary collaboration, patient education, and regular follow-up visits. The cardiopulmonary rehabilitation training plan developed in this study has certain scientific practicability, which provides a theoretical basis for cardiopulmonary rehabilitation training, and also provides a reference for medical institutions, rehabilitation centers and communities, which is helpful for promotion and application to a wider range of patients with cardiopulmonary diseases.展开更多
Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance.In this study,a large field-of-view time-encoded imager was developed for gamma-ray and ne...Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance.In this study,a large field-of-view time-encoded imager was developed for gamma-ray and neutron source hotspot imaging based on a depth-of-interaction(DOI)detector.The imager primarily consists of a DOI detector system and a rotary dual-layer cylindrical coded mask.An EJ276 plastic scintillator coupled with two SiPMs was designed as the DOI detector to increase the field of view and improve the imager performance.The difference in signal time at both ends and the log of the signal amplitude ratio were used to calculate the interaction position resolution.The position resolution of the DOI detector was calibrated using a collimated Cs-137 source,and the full width at half maximum of the reconstruction position of the Gaussian fitting curve was approximately 4.4 cm.The DOI detector can be arbitrarily divided into several units to independently reconstruct the source distribution images.The unit length was optimized via Am-Be source-location experiments.A multidetector filtering method is proposed for image denoising.This method can effectively reduce image noise caused by poor DOI detector position resolution.The vertical field of view of the imager was(-55°,55°)when the detector was placed in the center of the coded mask.A DT neutron source at 20 m standoff could be located within 2400 s with an angular resolution of 3.5°.展开更多
For patients with chronic spinal cord injury,the co nventional treatment is rehabilitation and treatment of spinal cord injury complications such as urinary tract infection,pressure sores,osteoporosis,and deep vein th...For patients with chronic spinal cord injury,the co nventional treatment is rehabilitation and treatment of spinal cord injury complications such as urinary tract infection,pressure sores,osteoporosis,and deep vein thrombosis.Surgery is rarely perfo rmed on spinal co rd injury in the chronic phase,and few treatments have been proven effective in chronic spinal cord injury patients.Development of effective therapies fo r chronic spinal co rd injury patients is needed.We conducted a randomized controlled clinical trial in patients with chronic complete thoracic spinal co rd injury to compare intensive rehabilitation(weight-bearing walking training)alone with surgical intervention plus intensive rehabilitation.This clinical trial was registered at ClinicalTrials.gov(NCT02663310).The goal of surgical intervention was spinal cord detethering,restoration of cerebrospinal fluid flow,and elimination of residual spinal cord compression.We found that surgical intervention plus weight-bearing walking training was associated with a higher incidence of American Spinal Injury Association Impairment Scale improvement,reduced spasticity,and more rapid bowel and bladder functional recovery than weight-bearing walking training alone.Overall,the surgical procedures and intensive rehabilitation were safe.American Spinal Injury Association Impairment Scale improvement was more common in T7-T11 injuries than in T2-T6 injuries.Surgery combined with rehabilitation appears to have a role in treatment of chronic spinal cord injury patients.展开更多
BACKGROUND Eighty percent of stroke patients develop upper limb dysfunction,especially hand dysfunction,which has a very slow recovery,resulting in economic burden to families and society.AIM To investigate the impact...BACKGROUND Eighty percent of stroke patients develop upper limb dysfunction,especially hand dysfunction,which has a very slow recovery,resulting in economic burden to families and society.AIM To investigate the impact of task-oriented training based on acupuncture therapy on upper extremity function in patients with early stroke.METHODS Patients with early stroke hemiplegia who visited our hospital between January 2021 and October 2022 were divided into a control group and an observation group,each with 50 cases.The control group underwent head acupuncture plus routine upper limb rehabilitation training(acupuncture therapy).In addition to acupuncture and rehabilitation,the observation group underwent upper limb task-oriented training(30 min).Each group underwent treatment 5 d/wk for 4 wk.Upper extremity function was assessed in both groups using the Fugl-Meyer Assessment-Upper Extremity(FMA-UE),Wolf Motor Function Rating Scale(WMFT),modified Barthel Index(MBI),and Canadian Occupational Performance Measure(COPM).Quality of life was evaluated using the Short-Form 36-Item Health Survey(SF-36).Clinical efficacy of the interventions was also evaluated.RESULTS Before intervention,no significant differences were observed in the FMA-UE,MBI,and WMFT scores between the two groups(P>0.05).After intervention,the FMA-UE,WMFT,MBI,COPM-Functional Mobility and Satisfaction,and SF-36 scores increased in both groups(P<0.05),with even higher scores in the observation group(P<0.05).The observation group also obtained a higher total effective rate than the control group(P<0.05).CONCLUSION Task-oriented training based on acupuncture rehabilitation significantly enhanced upper extremity mobility,quality of life,and clinical efficacy in patients with early stroke.展开更多
Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unma...Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements.展开更多
文摘Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image quality of handheld ultrasound devices is not always satisfactory due to the limited equipment size,which hinders accurate diagnoses by doctors.At the same time,paired ultrasound images are difficult to obtain from the clinic because imaging process is complicated.Therefore,we propose a modified cycle generative adversarial network(cycleGAN) for ultrasound image enhancement from multiple organs via unpaired pre-training.We introduce an ultrasound image pre-training method that does not require paired images,alleviating the requirement for large-scale paired datasets.We also propose an enhanced block with different structures in the pre-training and fine-tuning phases,which can help achieve the goals of different training phases.To improve the robustness of the model,we add Gaussian noise to the training images as data augmentation.Our approach is effective in obtaining the best quantitative evaluation results using a small number of parameters and less training costs to improve the quality of handheld ultrasound devices.
文摘Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction.However,because of the diversity in the shapes and sizes of tables,existing table detection methods adapted from general object detection algorithms,have not yet achieved satisfactory results.Incorrect detection results might lead to the loss of critical information.Methods Therefore,we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections.To better deal with table areas of different shapes and sizes,we added a dual-branch context content attention module(DCCAM)to high-dimensional features to extract context content information,thereby enhancing the network's ability to learn shape features.For feature fusion at different scales,we replaced the original 3×3 convolution with a multilayer residual module,which contains enhanced gradient flow information to improve the feature representation and extraction capability.Results We evaluated our method on public document datasets and compared it with previous methods,which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score.
基金suppoited by an Alexander Graliam Bell Canada Graduate Scholarship-Doctoralsupported by an Ontario Graduate Scholarshipsupported by the Canada Research Chairs programme。
文摘Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.
文摘A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.
基金supported by the National Natural Science Foundation of China(Grant Nos.42322408,42188101,41974211,and 42074202)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC028)+1 种基金the Strategic Priority Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15052500,XDA15350201,and XDA15014800)supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202045)。
文摘Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation(JPMJFS2115)。
文摘Dear Editor,This letter proposes to integrate dendritic learnable network architecture with Vision Transformer to improve the accuracy of image recognition.In this study,based on the theory of dendritic neurons in neuroscience,we design a network that is more practical for engineering to classify visual features.Based on this,we propose a dendritic learning-incorporated vision Transformer(DVT),which out-performs other state-of-the-art methods on three image recognition benchmarks.
基金funding and support from the United Kingdom Space Agency(UKSA)the European Space Agency(ESA)+5 种基金funded and supported through the ESA PRODEX schemefunded through PRODEX PEA 4000123238the Research Council of Norway grant 223252funded by Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-107061GB-C61funding and support from the Chinese Academy of Sciences(CAS)funding and support from the National Aeronautics and Space Administration(NASA)。
文摘The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.
基金supported by the Research Council of Norway under contracts 223252/F50 and 300844/F50the Trond Mohn Foundation。
文摘Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.
文摘Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.
文摘BACKGROUND Stroke is a common disabling disease,whether it is ischemic stroke or hemorrhagic stroke,both can result in neuronal damage,leading to various manifestations of neurological dysfunction.AIM To explore of the application value of swallowing treatment device combined with swallowing rehabilitation training in the treatment of swallowing disorders after stroke.METHODS This study selected 86 patients with swallowing disorders after stroke admitted to our rehabilitation department from February 2022 to December 2023 as research subjects.They were divided into a control group(n=43)and an observation group(n=43)according to the treatment.The control group received swallowing rehabilitation training,while the observation group received swallowing treatment device in addition to the training.Both groups underwent continuous intervention for two courses of treatment.RESULTS The total effective rate in the observation group(93.02%)was higher than that in the control group(76.74%)(P=0.035).After intervention,the oral transit time,swallowing response time,pharyngeal transit time,and laryngeal closure time decreased in both groups compared to before intervention.In the observation group,the oral transit time,swallowing response time,and pharyngeal transit time were shorter than those in the control group after intervention.However,the laryngeal closure time after intervention in the observation group was compared with that in the control group(P=0.142).After intervention,average amplitude value and duration of the genioglossus muscle group during empty swallowing and swallowing 5 mL of water are reduced compared to before intervention in both groups.After intervention,the scores of the chin-tuck swallowing exercise and the Standardized Swallowing Assessment are both reduced compared to pre-intervention levels in both groups.However,the observation group scores lower than the control group after intervention.Additionally,the Functional Oral Intake Scale scores of both groups are increased after intervention compared to pre-intervention levels,with the observation group scoring higher than the control group after intervention(P<0.001).The cumulative incidence of complications in the observation group is 9.30%,which is lower than the 27.91%in the control group(P=0.027).CONCLUSION The combination of swallowing therapy equipment with swallowing rehabilitation training can improve the muscle movement level of the genioglossus muscle group,enhance swallowing function,and prevent the occurrence of swallowing-related complications after stroke.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0107000)the General Projects of the National Natural Science Foundation of China(Grant No.52171259)the High-Tech Ship Research Project of the Ministry of Industry and Information Technology(Grant No.[2021]342)。
文摘Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.
基金the China Postdoctoral Science Foundation under Grant 2021M701838the Natural Science Foundation of Hainan Province of China under Grants 621MS042 and 622MS067the Hainan Medical University Teaching Achievement Award Cultivation under Grant HYjcpx202209.
文摘Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images have a large amount of low-quality data,which seriously affects the performance of segmentationmethods.Therefore,this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network(RCNN).First,the rough-set-based feature discretization module is designed to preprocess the input data.Second,a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable the model to adaptively select important information for fusion.Finally,the refinement module for enhancing the extraction power of multi-scale information is added to improve the edge accuracy in segmentation.RCNN is compared with CE-Net and MultiResUNet on 83 gold standard 3D retinal OCT data samples.The average dice similarly coefficient(DSC)obtained by RCNN is 6%higher than that of CE-Net.The average 95 percent Hausdorff distance(95HD)and average symmetric surface distance(ASD)obtained by RCNN are 32.4%and 33.3%lower than those of MultiResUNet,respectively.We also evaluate the effect of feature discretization,as well as analyze the initial learning rate of RCNN and conduct ablation experiments with the four different models.The experimental results indicate that our method can improve the segmentation accuracy of OCT fundus images,providing strong support for its application in medical image watermarking.
基金the TCL Science and Technology Innovation Fundthe Youth Science and Technology Talent Promotion Project of Jiangsu Association for Science and Technology,Grant/Award Number:JSTJ‐2023‐017+4 种基金Shenzhen Municipal Science and Technology Innovation Council,Grant/Award Number:JSGG20220831105002004National Natural Science Foundation of China,Grant/Award Number:62201468Postdoctoral Research Foundation of China,Grant/Award Number:2022M722599the Fundamental Research Funds for the Central Universities,Grant/Award Number:D5000210966the Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515110079。
文摘Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.
文摘To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.
基金funded by the National Natural Science Foundation of China(62125504,61827825,and 31901059)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.
文摘In today’s society, the incidence of cardiopulmonary diseases is increasing annually, seriously affecting patients’ quality of life. Therefore, developing a scientific and effective rehabilitation training program is of great significance. This study first analyzes the theoretical basis of cardiopulmonary rehabilitation training, including the effects of aerobic exercise, interval training, and strength training on cardiopulmonary function. Based on this, a comprehensive rehabilitation training program is designed, which includes personalized training plans, comprehensive interventions, multidisciplinary collaboration, patient education, and regular follow-up visits. The cardiopulmonary rehabilitation training plan developed in this study has certain scientific practicability, which provides a theoretical basis for cardiopulmonary rehabilitation training, and also provides a reference for medical institutions, rehabilitation centers and communities, which is helpful for promotion and application to a wider range of patients with cardiopulmonary diseases.
基金supported by the National Natural Science Foundation of China(Nos.11975121,12205131)the Fundamental Research Funds for the Central Universities(No.lzujbky-2021-sp58)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_0354)。
文摘Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance.In this study,a large field-of-view time-encoded imager was developed for gamma-ray and neutron source hotspot imaging based on a depth-of-interaction(DOI)detector.The imager primarily consists of a DOI detector system and a rotary dual-layer cylindrical coded mask.An EJ276 plastic scintillator coupled with two SiPMs was designed as the DOI detector to increase the field of view and improve the imager performance.The difference in signal time at both ends and the log of the signal amplitude ratio were used to calculate the interaction position resolution.The position resolution of the DOI detector was calibrated using a collimated Cs-137 source,and the full width at half maximum of the reconstruction position of the Gaussian fitting curve was approximately 4.4 cm.The DOI detector can be arbitrarily divided into several units to independently reconstruct the source distribution images.The unit length was optimized via Am-Be source-location experiments.A multidetector filtering method is proposed for image denoising.This method can effectively reduce image noise caused by poor DOI detector position resolution.The vertical field of view of the imager was(-55°,55°)when the detector was placed in the center of the coded mask.A DT neutron source at 20 m standoff could be located within 2400 s with an angular resolution of 3.5°.
基金supported by Hong Kong Spinal Cord Injury Fund (HKSCIF),China (to HZ)。
文摘For patients with chronic spinal cord injury,the co nventional treatment is rehabilitation and treatment of spinal cord injury complications such as urinary tract infection,pressure sores,osteoporosis,and deep vein thrombosis.Surgery is rarely perfo rmed on spinal co rd injury in the chronic phase,and few treatments have been proven effective in chronic spinal cord injury patients.Development of effective therapies fo r chronic spinal co rd injury patients is needed.We conducted a randomized controlled clinical trial in patients with chronic complete thoracic spinal co rd injury to compare intensive rehabilitation(weight-bearing walking training)alone with surgical intervention plus intensive rehabilitation.This clinical trial was registered at ClinicalTrials.gov(NCT02663310).The goal of surgical intervention was spinal cord detethering,restoration of cerebrospinal fluid flow,and elimination of residual spinal cord compression.We found that surgical intervention plus weight-bearing walking training was associated with a higher incidence of American Spinal Injury Association Impairment Scale improvement,reduced spasticity,and more rapid bowel and bladder functional recovery than weight-bearing walking training alone.Overall,the surgical procedures and intensive rehabilitation were safe.American Spinal Injury Association Impairment Scale improvement was more common in T7-T11 injuries than in T2-T6 injuries.Surgery combined with rehabilitation appears to have a role in treatment of chronic spinal cord injury patients.
文摘BACKGROUND Eighty percent of stroke patients develop upper limb dysfunction,especially hand dysfunction,which has a very slow recovery,resulting in economic burden to families and society.AIM To investigate the impact of task-oriented training based on acupuncture therapy on upper extremity function in patients with early stroke.METHODS Patients with early stroke hemiplegia who visited our hospital between January 2021 and October 2022 were divided into a control group and an observation group,each with 50 cases.The control group underwent head acupuncture plus routine upper limb rehabilitation training(acupuncture therapy).In addition to acupuncture and rehabilitation,the observation group underwent upper limb task-oriented training(30 min).Each group underwent treatment 5 d/wk for 4 wk.Upper extremity function was assessed in both groups using the Fugl-Meyer Assessment-Upper Extremity(FMA-UE),Wolf Motor Function Rating Scale(WMFT),modified Barthel Index(MBI),and Canadian Occupational Performance Measure(COPM).Quality of life was evaluated using the Short-Form 36-Item Health Survey(SF-36).Clinical efficacy of the interventions was also evaluated.RESULTS Before intervention,no significant differences were observed in the FMA-UE,MBI,and WMFT scores between the two groups(P>0.05).After intervention,the FMA-UE,WMFT,MBI,COPM-Functional Mobility and Satisfaction,and SF-36 scores increased in both groups(P<0.05),with even higher scores in the observation group(P<0.05).The observation group also obtained a higher total effective rate than the control group(P<0.05).CONCLUSION Task-oriented training based on acupuncture rehabilitation significantly enhanced upper extremity mobility,quality of life,and clinical efficacy in patients with early stroke.
文摘Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements.