With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image t...With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image transmission as an example, from the semantic communication's view, not all pixels in the images are equally important for certain receivers. The existing semantic communication systems directly perform semantic encoding and decoding on the whole image, in which the region of interest cannot be identified. In this paper, we propose a novel semantic communication system for image transmission that can distinguish between Regions Of Interest (ROI) and Regions Of Non-Interest (RONI) based on semantic segmentation, where a semantic segmentation algorithm is used to classify each pixel of the image and distinguish ROI and RONI. The system also enables high-quality transmission of ROI with lower communication overheads by transmissions through different semantic communication networks with different bandwidth requirements. An improved metric θPSNR is proposed to evaluate the transmission accuracy of the novel semantic transmission network. Experimental results show that our proposed system achieves a significant performance improvement compared with existing approaches, namely, existing semantic communication approaches and the conventional approach without semantics.展开更多
The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that c...The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced.This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images.The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression.This paper introduces a content-based image authentication mechanism that is suitable for usage across an untrusted network and resistant to data loss during transmission.By employing scale attributes and a key-dependent parametric Long Short-Term Memory(LSTM),it is feasible to improve the resilience of digital signatures against image deterioration and strengthen their security against malicious actions.Furthermore,the successful implementation of transmitting biometric data in a compressed format over a wireless network has been accomplished.For applications involving the transmission and sharing of images across a network.The suggested technique utilizes the scalability of a structural digital signature to attain a satisfactory equilibrium between security and picture transfer.An effective adaptive compression strategy was created to lengthen the overall lifetime of the network by sharing the processing of responsibilities.This scheme ensures a large reduction in computational and energy requirements while minimizing image quality loss.This approach employs multi-scale characteristics to improve the resistance of signatures against image deterioration.The proposed system attained a Gaussian noise value of 98%and a rotation accuracy surpassing 99%.展开更多
With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection abil...With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection ability of a single vehicle limits the SLAM performance in wide areas.Thereby,cooperative SLAM using multiple vehicles has become an important research direction.The key factor of cooperative SLAM is timely and efficient sonar image transmission among underwater vehicles.However,the limited bandwidth of underwater acoustic channels contradicts a large amount of sonar image data.It is essential to compress the images before transmission.Recently,deep neural networks have great value in image compression by virtue of the powerful learning ability of neural networks,but the existing sonar image compression methods based on neural network usually focus on the pixel-level information without the semantic-level information.In this paper,we propose a novel underwater acoustic transmission scheme called UAT-SSIC that includes semantic segmentation-based sonar image compression(SSIC)framework and the joint source-channel codec,to improve the accuracy of the semantic information of the reconstructed sonar image at the receiver.The SSIC framework consists of Auto-Encoder structure-based sonar image compression network,which is measured by a semantic segmentation network's residual.Considering that sonar images have the characteristics of blurred target edges,the semantic segmentation network used a special dilated convolution neural network(DiCNN)to enhance segmentation accuracy by expanding the range of receptive fields.The joint source-channel codec with unequal error protection is proposed that adjusts the power level of the transmitted data,which deal with sonar image transmission error caused by the serious underwater acoustic channel.Experiment results demonstrate that our method preserves more semantic information,with advantages over existing methods at the same compression ratio.It also improves the error tolerance and packet loss resistance of transmission.展开更多
The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication ...The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication standards.The Single Carrier Frequency Division Multiple Access(SC-FDMA)is adopted for broadband wireless communications,because of its low sensitivity to carrier frequency offsets and low Peak-to-Average Power Ratio(PAPR).Data transmission through open-channel networks requires much concentration on security,reliability,and integrity.The data need a space away fromunauthorized access,modification,or deletion.These requirements are to be fulfilled by digital image watermarking and encryption.This paper ismainly concerned with secure image communication over the wireless SC-FDMA systemas an adopted communication standard.It introduces a robust image communication framework over SC-FDMA that comprises digital image watermarking and encryption to improve image security,while maintaining a high-quality reconstruction of images at the receiver side.The proposed framework allows image watermarking based on the Discrete Cosine Transform(DCT)merged with the Singular Value Decomposition(SVD)in the so-called DCT-SVD watermarking.In addition,image encryption is implemented based on chaos and DNA encoding.The encrypted watermarked images are then transmitted through the wireless SC-FDMA system.The linearMinimumMean Square Error(MMSE)equalizer is investigated in this paper to mitigate the effect of channel fading and noise on the transmitted images.Two subcarrier mapping schemes,namely localized and interleaved schemes,are compared in this paper.The study depends on different channelmodels,namely PedestrianAandVehicularA,with a modulation technique namedQuadratureAmplitude Modulation(QAM).Extensive simulation experiments are conducted and introduced in this paper for efficient transmission of encrypted watermarked images.In addition,different variants of SC-FDMA based on the Discrete Wavelet Transform(DWT),Discrete Cosine Transform(DCT),and Fast Fourier Transform(FFT)are considered and compared for the image communication task.The simulation results and comparison demonstrate clearly that DWT-SC-FDMAis better suited to the transmission of the digital images in the case of PedestrianAchannels,while the DCT-SC-FDMA is better suited to the transmission of the digital images in the case of Vehicular A channels.展开更多
Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present ...Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.展开更多
The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of ...The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of the IoMT,particularly in the context of knowledge‐based learning systems.Smart healthcare systems leverage knowledge‐based learning to become more context‐aware,adaptable,and auditable while maintain-ing the ability to learn from historical data.In smart healthcare systems,devices capture images,such as X‐rays,Magnetic Resonance Imaging.The security and integrity of these images are crucial for the databases used in knowledge‐based learning systems to foster structured decision‐making and enhance the learning abilities of AI.Moreover,in knowledge‐driven systems,the storage and transmission of HD medical images exert a burden on the limited bandwidth of the communication channel,leading to data trans-mission delays.To address the security and latency concerns,this paper presents a lightweight medical image encryption scheme utilising bit‐plane decomposition and chaos theory.The results of the experiment yield entropy,energy,and correlation values of 7.999,0.0156,and 0.0001,respectively.This validates the effectiveness of the encryption system proposed in this paper,which offers high‐quality encryption,a large key space,key sensitivity,and resistance to statistical attacks.展开更多
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri...Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.展开更多
The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure ...The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.展开更多
To detect the deformation of the tunnel structure based on image sensor networks is the advanced study and application of spatial sensor technology. For the vertical settlement of metro tunnel caused by internal and e...To detect the deformation of the tunnel structure based on image sensor networks is the advanced study and application of spatial sensor technology. For the vertical settlement of metro tunnel caused by internal and external stress after its long period operation, the overall scheme and measuring principle of tunnel deformation detection system is in- troduced. The image data acquisition and processing of detection target are achieved by the cooperative work of image sensor, ARM embedded system. RS485 communication achieves the data transmission between ARM memory and host computer. The database system in station platform analyses the detection data and obtains the deformation state of tunnel inner wall, which makes it possible to early-warn the tunnel deformation and take preventive measures in time.展开更多
Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibilit...Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved.展开更多
Multimodal medical image fusion has attained immense popularity in recent years due to its robust technology for clinical diagnosis.It fuses multiple images into a single image to improve the quality of images by reta...Multimodal medical image fusion has attained immense popularity in recent years due to its robust technology for clinical diagnosis.It fuses multiple images into a single image to improve the quality of images by retaining significant information and aiding diagnostic practitioners in diagnosing and treating many diseases.However,recent image fusion techniques have encountered several challenges,including fusion artifacts,algorithm complexity,and high computing costs.To solve these problems,this study presents a novel medical image fusion strategy by combining the benefits of pixel significance with edge-preserving processing to achieve the best fusion performance.First,the method employs a cross-bilateral filter(CBF)that utilizes one image to determine the kernel and the other for filtering,and vice versa,by considering both geometric closeness and the gray-level similarities of neighboring pixels of the images without smoothing edges.The outputs of CBF are then subtracted from the original images to obtain detailed images.It further proposes to use edge-preserving processing that combines linear lowpass filtering with a non-linear technique that enables the selection of relevant regions in detailed images while maintaining structural properties.These regions are selected using morphologically processed linear filter residuals to identify the significant regions with high-amplitude edges and adequate size.The outputs of low-pass filtering are fused with meaningfully restored regions to reconstruct the original shape of the edges.In addition,weight computations are performed using these reconstructed images,and these weights are then fused with the original input images to produce a final fusion result by estimating the strength of horizontal and vertical details.Numerous standard quality evaluation metrics with complementary properties are used for comparison with existing,well-known algorithms objectively to validate the fusion results.Experimental results from the proposed research article exhibit superior performance compared to other competing techniques in the case of both qualitative and quantitative evaluation.In addition,the proposed method advocates less computational complexity and execution time while improving diagnostic computing accuracy.Nevertheless,due to the lower complexity of the fusion algorithm,the efficiency of fusion methods is high in practical applications.The results reveal that the proposed method exceeds the latest state-of-the-art methods in terms of providing detailed information,edge contour,and overall contrast.展开更多
Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate w...Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate with one another and with roadside infrastructure to enhance safety and traffic flow provide a range of value-added services,as they are an essential component of modern smart transportation systems.VANETs steganography has been suggested by many authors for secure,reliable message transfer between terminal/hope to terminal/hope and also to secure it from attack for privacy protection.This paper aims to determine whether using steganography is possible to improve data security and secrecy in VANET applications and to analyze effective steganography techniques for incorporating data into images while minimizing visual quality loss.According to simulations in literature and real-world studies,Image steganography proved to be an effectivemethod for secure communication on VANETs,even in difficult network conditions.In this research,we also explore a variety of steganography approaches for vehicular ad-hoc network transportation systems like vector embedding,statistics,spatial domain(SD),transform domain(TD),distortion,masking,and filtering.This study possibly shall help researchers to improve vehicle networks’ability to communicate securely and lay the door for innovative steganography methods.展开更多
Recently,deep image-hiding techniques have attracted considerable attention in covert communication and high-capacity information hiding.However,these approaches have some limitations.For example,a cover image lacks s...Recently,deep image-hiding techniques have attracted considerable attention in covert communication and high-capacity information hiding.However,these approaches have some limitations.For example,a cover image lacks self-adaptability,information leakage,or weak concealment.To address these issues,this study proposes a universal and adaptable image-hiding method.First,a domain attention mechanism is designed by combining the Atrous convolution,which makes better use of the relationship between the secret image domain and the cover image domain.Second,to improve perceived human similarity,perceptual loss is incorporated into the training process.The experimental results are promising,with the proposed method achieving an average pixel discrepancy(APD)of 1.83 and a peak signal-to-noise ratio(PSNR)value of 40.72 dB between the cover and stego images,indicative of its high-quality output.Furthermore,the structural similarity index measure(SSIM)reaches 0.985 while the learned perceptual image patch similarity(LPIPS)remarkably registers at 0.0001.Moreover,self-testing and cross-experiments demonstrate the model’s adaptability and generalization in unknown hidden spaces,making it suitable for diverse computer vision tasks.展开更多
In the era of internet proliferation,safeguarding digital media copyright and integrity,especially for images,is imperative.Digital watermarking stands out as a pivotal solution for image security.With the advent of d...In the era of internet proliferation,safeguarding digital media copyright and integrity,especially for images,is imperative.Digital watermarking stands out as a pivotal solution for image security.With the advent of deep learning,watermarking has seen significant advancements.Our review focuses on the innovative deep watermarking approaches that employ neural networks to identify robust embedding spaces,resilient to various attacks.These methods,characterized by a streamlined encoder-decoder architecture,have shown enhanced performance through the incorporation of novel training modules.This article offers an in-depth analysis of deep watermarking’s core technologies,current status,and prospective trajectories,evaluating recent scholarly contributions across diverse frameworks.It concludes with an overview of the technical hurdles and prospects,providing essential insights for ongoing and future research endeavors in digital image watermarking.展开更多
Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagn...Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid.Yet,the accurate prediction of the ground total electric field remains a technical challenge.In this work,we collected the total electric field data from the Ningdong-Zhejiang±800 kV UHVDC transmission project,as of the Ling Shao line,and perform an outlier analysis of the total electric field data.We show that the Local Outlier Factor(LOF)elimination algorithm has a small average difference and overcomes the performance of Density-Based Spatial Clustering of Applications with Noise(DBSCAN)and Isolated Forest elimination algorithms.Moreover,the Stacking algorithm has been found to have superior prediction accuracy than a variety of similar prediction algorithms,including the traditional finite element.The low prediction error of the Stacking algorithm highlights the superior ability to accurately forecast the ground total electric field of UHVDC transmission lines.展开更多
The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small e...The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small ellipticity.However,one of the most significant challenges lies in ultra-long-distance data transmission,particularly for the Magnetic and Helioseismic Imager(MHI),which is the most important payload and generates the largest volume of data in SPO.In this paper,we propose a tailored lossless data compression method based on the measurement mode and characteristics of MHI data.The background out of the solar disk is removed to decrease the pixel number of an image under compression.Multiple predictive coding methods are combined to eliminate the redundancy utilizing the correlation(space,spectrum,and polarization)in data set,improving the compression ratio.Experimental results demonstrate that our method achieves an average compression ratio of 3.67.The compression time is also less than the general observation period.The method exhibits strong feasibility and can be easily adapted to MHI.展开更多
Aeromagnetic data over the Mamfe Basin have been processed. A regional magnetic gridded dataset was obtained from the Total Magnetic Intensity (TMI) data grid using a 3 × 3 convolution (Hanning) filter to remove ...Aeromagnetic data over the Mamfe Basin have been processed. A regional magnetic gridded dataset was obtained from the Total Magnetic Intensity (TMI) data grid using a 3 × 3 convolution (Hanning) filter to remove regional trends. Major similarities in magnetic field orientation and intensities were observed at identical locations on both the regional and TMI data grids. From the regional and TMI gridded datasets, the residual dataset was generated which represents the very shallow geological features of the basin. Processing this residual data grid using the Source Parameter Imaging (SPI) for magnetic depth suggests that the estimated depths to magnetic sources in the basin range from about 271 m to 3552 m. The highest depths are located in two main locations somewhere around the central portion of the study area which correspond to the area with positive magnetic susceptibilities, as well as the areas extending outwards across the eastern boundary of the study area. Shallow magnetic depths are prominent towards the NW portion of the basin and also correspond to areas of negative magnetic susceptibilities. The basin generally exhibits a variation in depth of magnetic sources with high, average and shallow depths. The presence of intrusive igneous rocks was also observed in this basin. This characteristic is a pointer to the existence of geologic resources of interest for exploration in the basin.展开更多
This article outlines the development of downhole monitoring and data transmission technology for separated zone water injection in China.According to the development stages,the principles,operation processes,adaptabi...This article outlines the development of downhole monitoring and data transmission technology for separated zone water injection in China.According to the development stages,the principles,operation processes,adaptability and application status of traditional downhole data acquisition method,cable communications and testing technology,cable-controlled downhole parameter real-time monitoring communication method and downhole wireless communication technology are introduced in detail.Problems and challenges of existing technologies in downhole monitoring and data transmission technology are pointed out.According to the production requirement,the future development direction of the downhole monitoring and data transmission technology for separated zone water injection is proposed.For the large number of wells adopting cable measuring and adjustment technology,the key is to realize the digitalization of downhole plug.For the key monitoring wells,cable-controlled communication technology needs to be improved,and downhole monitoring and data transmission technology based on composite coiled tubing needs to be developed to make the operation more convenient and reliable.For large-scale application in oil fields,downhole wireless communication technology should be developed to realize automation of measurement and adjustment.In line with ground mobile communication network,a digital communication network covering the control center,water distribution station and oil reservoir should be built quickly to provide technical support for the digitization of reservoir development.展开更多
Due to the presence of turbid media, such as microdust and water vapor in the environment, outdoor pictures taken under hazy weather circumstances are typically degraded. To enhance the quality of such images, this wo...Due to the presence of turbid media, such as microdust and water vapor in the environment, outdoor pictures taken under hazy weather circumstances are typically degraded. To enhance the quality of such images, this work proposes a new hybrid λ2-λ0 penalty model for image dehazing. This model performs a weighted fusion of two distinct transmission maps, generated by imposing λ2 and λ0 norm penalties on the approximate regression coefficients of the transmission map. This approach effectively balances the sparsity and smoothness associated with the λ0 and λ2 norms, thereby optimizing the transmittance map. Specifically, when the λ2 norm is penalized in the model, an updated guided image is obtained after implementing λ0 penalty. The resulting optimization problem is effectively solved using the least square method and the alternating direction algorithm. The dehazing framework combines the advantages of λ2 and λ0 norms, enhancing sparse and smoothness, resulting in higher quality images with clearer details and preserved edges.展开更多
Many Internet of things application scenarios have the characteristics of limited hardware resources and limited energy supply,which are not suitable for traditional security technology.The security technology based o...Many Internet of things application scenarios have the characteristics of limited hardware resources and limited energy supply,which are not suitable for traditional security technology.The security technology based on the physicalmechanism has attracted extensive attention.How to improve the key generation rate has always been one of the urgent problems to be solved in the security technology based on the physical mechanism.In this paper,superlattice technology is introduced to the security field of Internet of things,and a high-speed symmetric key generation scheme based on superlattice for Internet of things is proposed.In order to ensure the efficiency and privacy of data transmission,we also combine the superlattice symmetric key and compressive sensing technology to build a lightweight data transmission scheme that supports data compression and data encryption at the same time.Theoretical analysis and experimental evaluation results show that the proposed scheme is superior to the most closely related work.展开更多
基金supported in part by collaborative research with Toyota Motor Corporation,in part by ROIS NII Open Collaborative Research under Grant 21S0601,in part by JSPS KAKENHI under Grants 20H00592,21H03424.
文摘With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image transmission as an example, from the semantic communication's view, not all pixels in the images are equally important for certain receivers. The existing semantic communication systems directly perform semantic encoding and decoding on the whole image, in which the region of interest cannot be identified. In this paper, we propose a novel semantic communication system for image transmission that can distinguish between Regions Of Interest (ROI) and Regions Of Non-Interest (RONI) based on semantic segmentation, where a semantic segmentation algorithm is used to classify each pixel of the image and distinguish ROI and RONI. The system also enables high-quality transmission of ROI with lower communication overheads by transmissions through different semantic communication networks with different bandwidth requirements. An improved metric θPSNR is proposed to evaluate the transmission accuracy of the novel semantic transmission network. Experimental results show that our proposed system achieves a significant performance improvement compared with existing approaches, namely, existing semantic communication approaches and the conventional approach without semantics.
文摘The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced.This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images.The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression.This paper introduces a content-based image authentication mechanism that is suitable for usage across an untrusted network and resistant to data loss during transmission.By employing scale attributes and a key-dependent parametric Long Short-Term Memory(LSTM),it is feasible to improve the resilience of digital signatures against image deterioration and strengthen their security against malicious actions.Furthermore,the successful implementation of transmitting biometric data in a compressed format over a wireless network has been accomplished.For applications involving the transmission and sharing of images across a network.The suggested technique utilizes the scalability of a structural digital signature to attain a satisfactory equilibrium between security and picture transfer.An effective adaptive compression strategy was created to lengthen the overall lifetime of the network by sharing the processing of responsibilities.This scheme ensures a large reduction in computational and energy requirements while minimizing image quality loss.This approach employs multi-scale characteristics to improve the resistance of signatures against image deterioration.The proposed system attained a Gaussian noise value of 98%and a rotation accuracy surpassing 99%.
基金supported in part by the Tianjin Technology Innovation Guidance Special Fund Project under Grant No.21YDTPJC00850in part by the National Natural Science Foundation of China under Grant No.41906161in part by the Natural Science Foundation of Tianjin under Grant No.21JCQNJC00650。
文摘With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection ability of a single vehicle limits the SLAM performance in wide areas.Thereby,cooperative SLAM using multiple vehicles has become an important research direction.The key factor of cooperative SLAM is timely and efficient sonar image transmission among underwater vehicles.However,the limited bandwidth of underwater acoustic channels contradicts a large amount of sonar image data.It is essential to compress the images before transmission.Recently,deep neural networks have great value in image compression by virtue of the powerful learning ability of neural networks,but the existing sonar image compression methods based on neural network usually focus on the pixel-level information without the semantic-level information.In this paper,we propose a novel underwater acoustic transmission scheme called UAT-SSIC that includes semantic segmentation-based sonar image compression(SSIC)framework and the joint source-channel codec,to improve the accuracy of the semantic information of the reconstructed sonar image at the receiver.The SSIC framework consists of Auto-Encoder structure-based sonar image compression network,which is measured by a semantic segmentation network's residual.Considering that sonar images have the characteristics of blurred target edges,the semantic segmentation network used a special dilated convolution neural network(DiCNN)to enhance segmentation accuracy by expanding the range of receptive fields.The joint source-channel codec with unequal error protection is proposed that adjusts the power level of the transmitted data,which deal with sonar image transmission error caused by the serious underwater acoustic channel.Experiment results demonstrate that our method preserves more semantic information,with advantages over existing methods at the same compression ratio.It also improves the error tolerance and packet loss resistance of transmission.
基金the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,Grant No.(44-PRFA-P-131).
文摘The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication standards.The Single Carrier Frequency Division Multiple Access(SC-FDMA)is adopted for broadband wireless communications,because of its low sensitivity to carrier frequency offsets and low Peak-to-Average Power Ratio(PAPR).Data transmission through open-channel networks requires much concentration on security,reliability,and integrity.The data need a space away fromunauthorized access,modification,or deletion.These requirements are to be fulfilled by digital image watermarking and encryption.This paper ismainly concerned with secure image communication over the wireless SC-FDMA systemas an adopted communication standard.It introduces a robust image communication framework over SC-FDMA that comprises digital image watermarking and encryption to improve image security,while maintaining a high-quality reconstruction of images at the receiver side.The proposed framework allows image watermarking based on the Discrete Cosine Transform(DCT)merged with the Singular Value Decomposition(SVD)in the so-called DCT-SVD watermarking.In addition,image encryption is implemented based on chaos and DNA encoding.The encrypted watermarked images are then transmitted through the wireless SC-FDMA system.The linearMinimumMean Square Error(MMSE)equalizer is investigated in this paper to mitigate the effect of channel fading and noise on the transmitted images.Two subcarrier mapping schemes,namely localized and interleaved schemes,are compared in this paper.The study depends on different channelmodels,namely PedestrianAandVehicularA,with a modulation technique namedQuadratureAmplitude Modulation(QAM).Extensive simulation experiments are conducted and introduced in this paper for efficient transmission of encrypted watermarked images.In addition,different variants of SC-FDMA based on the Discrete Wavelet Transform(DWT),Discrete Cosine Transform(DCT),and Fast Fourier Transform(FFT)are considered and compared for the image communication task.The simulation results and comparison demonstrate clearly that DWT-SC-FDMAis better suited to the transmission of the digital images in the case of PedestrianAchannels,while the DCT-SC-FDMA is better suited to the transmission of the digital images in the case of Vehicular A channels.
文摘Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.
文摘The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of the IoMT,particularly in the context of knowledge‐based learning systems.Smart healthcare systems leverage knowledge‐based learning to become more context‐aware,adaptable,and auditable while maintain-ing the ability to learn from historical data.In smart healthcare systems,devices capture images,such as X‐rays,Magnetic Resonance Imaging.The security and integrity of these images are crucial for the databases used in knowledge‐based learning systems to foster structured decision‐making and enhance the learning abilities of AI.Moreover,in knowledge‐driven systems,the storage and transmission of HD medical images exert a burden on the limited bandwidth of the communication channel,leading to data trans-mission delays.To address the security and latency concerns,this paper presents a lightweight medical image encryption scheme utilising bit‐plane decomposition and chaos theory.The results of the experiment yield entropy,energy,and correlation values of 7.999,0.0156,and 0.0001,respectively.This validates the effectiveness of the encryption system proposed in this paper,which offers high‐quality encryption,a large key space,key sensitivity,and resistance to statistical attacks.
基金funded by the National Natural Science Foundation of China(NSFC,Nos.12373086 and 12303082)CAS“Light of West China”Program+2 种基金Yunnan Revitalization Talent Support Program in Yunnan ProvinceNational Key R&D Program of ChinaGravitational Wave Detection Project No.2022YFC2203800。
文摘Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.
基金support of the Interdisciplinary Research Center for Intelligent Secure Systems(IRC-ISS)Internal Fund Grant#INSS2202.
文摘The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.
基金Science and Technology Commission of Shanghai Municipality(No.08201202103)
文摘To detect the deformation of the tunnel structure based on image sensor networks is the advanced study and application of spatial sensor technology. For the vertical settlement of metro tunnel caused by internal and external stress after its long period operation, the overall scheme and measuring principle of tunnel deformation detection system is in- troduced. The image data acquisition and processing of detection target are achieved by the cooperative work of image sensor, ARM embedded system. RS485 communication achieves the data transmission between ARM memory and host computer. The database system in station platform analyses the detection data and obtains the deformation state of tunnel inner wall, which makes it possible to early-warn the tunnel deformation and take preventive measures in time.
基金supported by a grant from the Basic Science Research Program through the National Research Foundation(NRF)(2021R1F1A1063634)funded by the Ministry of Science and ICT(MSIT),Republic of KoreaThe authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/13/40)+2 种基金Also,the authors are thankful to Prince Satam bin Abdulaziz University for supporting this study via funding from Prince Satam bin Abdulaziz University project number(PSAU/2024/R/1445)This work was also supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R54)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved.
文摘Multimodal medical image fusion has attained immense popularity in recent years due to its robust technology for clinical diagnosis.It fuses multiple images into a single image to improve the quality of images by retaining significant information and aiding diagnostic practitioners in diagnosing and treating many diseases.However,recent image fusion techniques have encountered several challenges,including fusion artifacts,algorithm complexity,and high computing costs.To solve these problems,this study presents a novel medical image fusion strategy by combining the benefits of pixel significance with edge-preserving processing to achieve the best fusion performance.First,the method employs a cross-bilateral filter(CBF)that utilizes one image to determine the kernel and the other for filtering,and vice versa,by considering both geometric closeness and the gray-level similarities of neighboring pixels of the images without smoothing edges.The outputs of CBF are then subtracted from the original images to obtain detailed images.It further proposes to use edge-preserving processing that combines linear lowpass filtering with a non-linear technique that enables the selection of relevant regions in detailed images while maintaining structural properties.These regions are selected using morphologically processed linear filter residuals to identify the significant regions with high-amplitude edges and adequate size.The outputs of low-pass filtering are fused with meaningfully restored regions to reconstruct the original shape of the edges.In addition,weight computations are performed using these reconstructed images,and these weights are then fused with the original input images to produce a final fusion result by estimating the strength of horizontal and vertical details.Numerous standard quality evaluation metrics with complementary properties are used for comparison with existing,well-known algorithms objectively to validate the fusion results.Experimental results from the proposed research article exhibit superior performance compared to other competing techniques in the case of both qualitative and quantitative evaluation.In addition,the proposed method advocates less computational complexity and execution time while improving diagnostic computing accuracy.Nevertheless,due to the lower complexity of the fusion algorithm,the efficiency of fusion methods is high in practical applications.The results reveal that the proposed method exceeds the latest state-of-the-art methods in terms of providing detailed information,edge contour,and overall contrast.
基金Dr.Arshiya Sajid Ansari would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project No.R-2023-910.
文摘Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate with one another and with roadside infrastructure to enhance safety and traffic flow provide a range of value-added services,as they are an essential component of modern smart transportation systems.VANETs steganography has been suggested by many authors for secure,reliable message transfer between terminal/hope to terminal/hope and also to secure it from attack for privacy protection.This paper aims to determine whether using steganography is possible to improve data security and secrecy in VANET applications and to analyze effective steganography techniques for incorporating data into images while minimizing visual quality loss.According to simulations in literature and real-world studies,Image steganography proved to be an effectivemethod for secure communication on VANETs,even in difficult network conditions.In this research,we also explore a variety of steganography approaches for vehicular ad-hoc network transportation systems like vector embedding,statistics,spatial domain(SD),transform domain(TD),distortion,masking,and filtering.This study possibly shall help researchers to improve vehicle networks’ability to communicate securely and lay the door for innovative steganography methods.
基金supported by the National Key R&D Program of China(Grant Number 2021YFB2700900)the National Natural Science Foundation of China(Grant Numbers 62172232,62172233)the Jiangsu Basic Research Program Natural Science Foundation(Grant Number BK20200039).
文摘Recently,deep image-hiding techniques have attracted considerable attention in covert communication and high-capacity information hiding.However,these approaches have some limitations.For example,a cover image lacks self-adaptability,information leakage,or weak concealment.To address these issues,this study proposes a universal and adaptable image-hiding method.First,a domain attention mechanism is designed by combining the Atrous convolution,which makes better use of the relationship between the secret image domain and the cover image domain.Second,to improve perceived human similarity,perceptual loss is incorporated into the training process.The experimental results are promising,with the proposed method achieving an average pixel discrepancy(APD)of 1.83 and a peak signal-to-noise ratio(PSNR)value of 40.72 dB between the cover and stego images,indicative of its high-quality output.Furthermore,the structural similarity index measure(SSIM)reaches 0.985 while the learned perceptual image patch similarity(LPIPS)remarkably registers at 0.0001.Moreover,self-testing and cross-experiments demonstrate the model’s adaptability and generalization in unknown hidden spaces,making it suitable for diverse computer vision tasks.
基金supported by the National Natural Science Foundation of China(Nos.62072465,62102425)the Science and Technology Innovation Program of Hunan Province(Nos.2022RC3061,2023RC3027).
文摘In the era of internet proliferation,safeguarding digital media copyright and integrity,especially for images,is imperative.Digital watermarking stands out as a pivotal solution for image security.With the advent of deep learning,watermarking has seen significant advancements.Our review focuses on the innovative deep watermarking approaches that employ neural networks to identify robust embedding spaces,resilient to various attacks.These methods,characterized by a streamlined encoder-decoder architecture,have shown enhanced performance through the incorporation of novel training modules.This article offers an in-depth analysis of deep watermarking’s core technologies,current status,and prospective trajectories,evaluating recent scholarly contributions across diverse frameworks.It concludes with an overview of the technical hurdles and prospects,providing essential insights for ongoing and future research endeavors in digital image watermarking.
基金funded by a science and technology project of State Grid Corporation of China“Comparative Analysis of Long-Term Measurement and Prediction of the Ground Synthetic Electric Field of±800 kV DC Transmission Line”(GYW11201907738)Paulo R.F.Rocha acknowledges the support and funding from the European Research Council(ERC)under the European Union’s Horizon 2020 Research and Innovation Program(Grant Agreement No.947897).
文摘Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid.Yet,the accurate prediction of the ground total electric field remains a technical challenge.In this work,we collected the total electric field data from the Ningdong-Zhejiang±800 kV UHVDC transmission project,as of the Ling Shao line,and perform an outlier analysis of the total electric field data.We show that the Local Outlier Factor(LOF)elimination algorithm has a small average difference and overcomes the performance of Density-Based Spatial Clustering of Applications with Noise(DBSCAN)and Isolated Forest elimination algorithms.Moreover,the Stacking algorithm has been found to have superior prediction accuracy than a variety of similar prediction algorithms,including the traditional finite element.The low prediction error of the Stacking algorithm highlights the superior ability to accurately forecast the ground total electric field of UHVDC transmission lines.
基金supported by the National Key R&D Program of China(grant No.2022YFF0503800)by the National Natural Science Foundation of China(NSFC)(grant No.11427901)+1 种基金by the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS-SPP)(grant No.XDA15320102)by the Youth Innovation Promotion Association(CAS No.2022057)。
文摘The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small ellipticity.However,one of the most significant challenges lies in ultra-long-distance data transmission,particularly for the Magnetic and Helioseismic Imager(MHI),which is the most important payload and generates the largest volume of data in SPO.In this paper,we propose a tailored lossless data compression method based on the measurement mode and characteristics of MHI data.The background out of the solar disk is removed to decrease the pixel number of an image under compression.Multiple predictive coding methods are combined to eliminate the redundancy utilizing the correlation(space,spectrum,and polarization)in data set,improving the compression ratio.Experimental results demonstrate that our method achieves an average compression ratio of 3.67.The compression time is also less than the general observation period.The method exhibits strong feasibility and can be easily adapted to MHI.
文摘Aeromagnetic data over the Mamfe Basin have been processed. A regional magnetic gridded dataset was obtained from the Total Magnetic Intensity (TMI) data grid using a 3 × 3 convolution (Hanning) filter to remove regional trends. Major similarities in magnetic field orientation and intensities were observed at identical locations on both the regional and TMI data grids. From the regional and TMI gridded datasets, the residual dataset was generated which represents the very shallow geological features of the basin. Processing this residual data grid using the Source Parameter Imaging (SPI) for magnetic depth suggests that the estimated depths to magnetic sources in the basin range from about 271 m to 3552 m. The highest depths are located in two main locations somewhere around the central portion of the study area which correspond to the area with positive magnetic susceptibilities, as well as the areas extending outwards across the eastern boundary of the study area. Shallow magnetic depths are prominent towards the NW portion of the basin and also correspond to areas of negative magnetic susceptibilities. The basin generally exhibits a variation in depth of magnetic sources with high, average and shallow depths. The presence of intrusive igneous rocks was also observed in this basin. This characteristic is a pointer to the existence of geologic resources of interest for exploration in the basin.
基金Supported by the National Natural Science Foundation Science Center Project/Basic Science Center Project(72088101)PetroChina Scientific Research and Technology Development Project(2020B-4119,2021ZG12).
文摘This article outlines the development of downhole monitoring and data transmission technology for separated zone water injection in China.According to the development stages,the principles,operation processes,adaptability and application status of traditional downhole data acquisition method,cable communications and testing technology,cable-controlled downhole parameter real-time monitoring communication method and downhole wireless communication technology are introduced in detail.Problems and challenges of existing technologies in downhole monitoring and data transmission technology are pointed out.According to the production requirement,the future development direction of the downhole monitoring and data transmission technology for separated zone water injection is proposed.For the large number of wells adopting cable measuring and adjustment technology,the key is to realize the digitalization of downhole plug.For the key monitoring wells,cable-controlled communication technology needs to be improved,and downhole monitoring and data transmission technology based on composite coiled tubing needs to be developed to make the operation more convenient and reliable.For large-scale application in oil fields,downhole wireless communication technology should be developed to realize automation of measurement and adjustment.In line with ground mobile communication network,a digital communication network covering the control center,water distribution station and oil reservoir should be built quickly to provide technical support for the digitization of reservoir development.
文摘Due to the presence of turbid media, such as microdust and water vapor in the environment, outdoor pictures taken under hazy weather circumstances are typically degraded. To enhance the quality of such images, this work proposes a new hybrid λ2-λ0 penalty model for image dehazing. This model performs a weighted fusion of two distinct transmission maps, generated by imposing λ2 and λ0 norm penalties on the approximate regression coefficients of the transmission map. This approach effectively balances the sparsity and smoothness associated with the λ0 and λ2 norms, thereby optimizing the transmittance map. Specifically, when the λ2 norm is penalized in the model, an updated guided image is obtained after implementing λ0 penalty. The resulting optimization problem is effectively solved using the least square method and the alternating direction algorithm. The dehazing framework combines the advantages of λ2 and λ0 norms, enhancing sparse and smoothness, resulting in higher quality images with clearer details and preserved edges.
基金This work was supported by the Humanities and Social Science Youth Fund of Ministry of Education of China(19YJCZH254)the Innovation driven plan project of Hunan University of Technology and Business in 2020,the Scientific Research Fund of Hunan Provincial Education Department(19B315)this work was funded by the Researchers Supporting Project No.(RSP-2021/102)King Saud University,Riyadh,Saudi Arabia.
文摘Many Internet of things application scenarios have the characteristics of limited hardware resources and limited energy supply,which are not suitable for traditional security technology.The security technology based on the physicalmechanism has attracted extensive attention.How to improve the key generation rate has always been one of the urgent problems to be solved in the security technology based on the physical mechanism.In this paper,superlattice technology is introduced to the security field of Internet of things,and a high-speed symmetric key generation scheme based on superlattice for Internet of things is proposed.In order to ensure the efficiency and privacy of data transmission,we also combine the superlattice symmetric key and compressive sensing technology to build a lightweight data transmission scheme that supports data compression and data encryption at the same time.Theoretical analysis and experimental evaluation results show that the proposed scheme is superior to the most closely related work.