A new terminal guidance law is proposed based on a solid propellant pulse engine and an improved proportional navigation method to address the terminal guidance issue for kinetic interceptors.On this basis,the start-s...A new terminal guidance law is proposed based on a solid propellant pulse engine and an improved proportional navigation method to address the terminal guidance issue for kinetic interceptors.On this basis,the start-stop curve of the pulse motor during the terminal guidance process is designed,along with its start-up logic.The effectiveness of the proposed guidance strategy is verified through simulation.展开更多
Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approac...Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approach for missile with terminal impact angle constraint is proposed.First,a mathematical model of an integrated guidance and control model in pitch plane is established,and then nonlinear transformation is employed to transform the mathematical model into a standard form suitable for sliding mode control method design.A sufficient condition for the existence of linear sliding surface is given in terms of linear matrix inequalities(LMIs),based on which the corresponding reaching motion controller is also developed.To verify the effectiveness of the proposed integrated design scheme,the numerical simulation of missile is made.The simulation results demonstrate that the proposed guidance and control law can guide missile to hit the target with desired impact angle and desired flight attitude angle simultaneously.展开更多
A deceptive pull-off jamming method to terminal guidance radar is put forward in this paper.The design rules about the important jamming parameters are discussed in detail,including the number of the decoy targets in ...A deceptive pull-off jamming method to terminal guidance radar is put forward in this paper.The design rules about the important jamming parameters are discussed in detail,including the number of the decoy targets in range dimension,the velocity of the range gate pull-off,and the number of the decoy targets in velocity dimension and the velocity of the Doppler frequency pull-off.Also,the steps to design these parameters are brought out.The rules and design procedure discussed in this paper have important meaning for the choice of the reasonable jamming parameters in the practical applications,which can help to obtain good jamming effect.展开更多
A novel integrated guidance and control (IGC) design method is proposed to solve problems of low control accuracy for a suicide unmanned combat aerial vehicle (UCAV) in the terminal attack stage. First of all, the IGC...A novel integrated guidance and control (IGC) design method is proposed to solve problems of low control accuracy for a suicide unmanned combat aerial vehicle (UCAV) in the terminal attack stage. First of all, the IGC system model of the UCAV is built based on the three-channel independent design idea, which reduces the difficulties of designing the controller. Then, IGC control laws are designed using the trajectory linearization control (TLC). A nonlinear disturbance observer (NDO) is introduced to the IGC controller to reject various uncertainties, such as the aerodynamic parameter perturbation and the measurement error interference. The stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the proposed IGC design method is verified in a terminal attack mission of the suicide UCAV. Finally, simulation results demonstrate the superiority and effectiveness in the aspects of guidance accuracy and system robustness.展开更多
A trajectory shaping guidance law based on virtua angle (TSGLBVA) is proposed for a re-entry vehicle with the constraints of terminal impact angles and their time derivatives. In the view of differential properties ...A trajectory shaping guidance law based on virtua angle (TSGLBVA) is proposed for a re-entry vehicle with the constraints of terminal impact angles and their time derivatives. In the view of differential properties of the maneuvering trajectory, a virtual angle and a virtual radius are defined. Also, the shaping trajectory of the vehicle is established by the polynomials of the virtual angle. Then, four optimized parameters are selected according to the theorem of parameters transformation presented in this paper. Finally, a convergent variant of the Nelder-Mead algorithm is adopted to obtain the reference trajectory, and a trajectory feedback tracking guidance law is designed. The simulation results demonstrate that the TSGLBVA ensures the re-entry vehicle to impact a target precisely from a specified direction with smal terminal load factor command, as well as to obtain a maximum or constrained terminal velocity according to various requirements.展开更多
In this paper,an optimal guidance law for missiles with impact angle and miss distance constraints is proposed to achieve the maximal terminal velocity. The normal acceleration command that includes the timevarying co...In this paper,an optimal guidance law for missiles with impact angle and miss distance constraints is proposed to achieve the maximal terminal velocity. The normal acceleration command that includes the timevarying coefficients is introduced to satisfy the desired impact angle as well as zero miss distance according to the geometric relation and relative motion parameters between missile and target. The problem is formulated as an optimal control problem by defining the angle of velocity error and flight-path angle as state variables and maximizing a performance index of the terminal velocity. The analytical form of the proposed guidance law is obtained as the solution of the optimal control problem combining optimal control theory and numerical value computation method. Nonlinear simulations of various situations demonstrate the performance and feasibility of the proposed optimal guidance law.展开更多
In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary ...In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary target. First, to decouple constraints of the FOV angle and the terminal lateral acceleration, the third-order polynomial with respect to the line-ofsight(LOS) angle is introduced. Based on an analysis of the relationship between the looking angle and the guidance coefficient,the boundary of the coefficient that satisfies the FOV constraint is obtained. The terminal guidance law coefficient is used to guarantee the convergence of the terminal conditions. Furthermore, the proposed law can be implemented under bearingsonly information, as the guidance command does not involve the relative range and the LOS angle rate. Finally, numerical simulations are performed based on a kinematic vehicle model to verify the effectiveness of the guidance law. Overall, the work offers an easily implementable guidance law with closed-form guidance gains, which is suitable for engineering applications.展开更多
Feature aided design of estimators and guidance laws can significantly improve the interception performance of the terminal guidance system. The achieved enhancement can be effectively assessed by observability analys...Feature aided design of estimators and guidance laws can significantly improve the interception performance of the terminal guidance system. The achieved enhancement can be effectively assessed by observability analysis methods. This paper first analyzes and discusses the existing assessment methods in a typical endgame scenario with target orientation observations. To get over their deficiencies, a novel singular value decomposition(SVD) method is proposed. Employing both theoretical analysis and numerical simulation, the proposed method can represent the degree of state observability which is enhanced by integrating target features more completely and quantitatively.展开更多
This paper presents an integrated guidance and control model for a flexible hypersonic vehicle with terminal angular constraints.The integrated guidance and control model is bounded and the dead-zone input nonlinearit...This paper presents an integrated guidance and control model for a flexible hypersonic vehicle with terminal angular constraints.The integrated guidance and control model is bounded and the dead-zone input nonlinearity is considered in the system dynamics.The line of sight angle,line of sight angle rate,attack angle and pitch rate are involved in the integrated guidance and control system.The controller is designed with a backstepping method,in which a first order filter is employed to avoid the differential explosion.The full tuned radial basis function(RBF)neural network(NN)is used to approximate the system dynamics with robust item coping with the reconstruction errors,the exactitude model requirement is reduced in the controller design.In the last step of backstepping method design,the adaptive control with Nussbaum function is used for the unknown dynamics with a time-varying control gain function.The uniform ultimate boundedness stability of the control system is proved.The simulation results validate the effectiveness of the controller design.展开更多
Focusing on the non-concave trajectory constraint,a sliding-mode-based nonsingular feedback fast fixed-time three-dimensional terminal guidance of rotor unmanned aerial vehicle landing,planetary landing and spacecraft...Focusing on the non-concave trajectory constraint,a sliding-mode-based nonsingular feedback fast fixed-time three-dimensional terminal guidance of rotor unmanned aerial vehicle landing,planetary landing and spacecraft rendezvous and docking terminal phase with external disturbance is investigated in this paper.Firstly,a fixed-time observer based on real-time differentiator is developed to compensate for the external disturbance,whose estimation error can converge to zero after a time independent of the initial state.Then,a sliding surface ensuring fixed-time convergence is presented.This sliding surface can guarantee that the vehicle achieves a non-concave trajectory,which is better for avoiding collision and maintaining the visibility of the landing site or docking port.Next,the nonsingular guidance ensuring the fixed-time convergence of the sliding surface is proposed,which is continuous and chatter free.At last,three numerical simulations of Mars landing are performed to validate the effectiveness and correctness of the designed scheme.展开更多
This paper presents an Iterative Learning Control design applied to homing guidance of missiles against maneuvering targets. According to numerical experiments, although an increase of the control energies is apprecia...This paper presents an Iterative Learning Control design applied to homing guidance of missiles against maneuvering targets. According to numerical experiments, although an increase of the control energies is appreciated with respect to a previous published base controller for comparison, this strategy, which is simple to realize, is able to reduce the time to reach the head-on condition to target destruction. This fact is important to minimize the missile lateral force-level to fulfill engaging in hyper-sonic target persecutions.展开更多
A target localization algorithm,which uses the measurement information from onboard GPS and onboard laser detector to acquire the target position,is proposed to obtain the accurate position of ground target in real ti...A target localization algorithm,which uses the measurement information from onboard GPS and onboard laser detector to acquire the target position,is proposed to obtain the accurate position of ground target in real time in the trajectory correction process of semi-active laser terminal correction projectile.A target localization model is established according to projectile position,attitude and line-of-sight angle.The effects of measurement errors of projectile position,attitude and line-of-sight angle on localization accuracy at different quadrant elevation angles are analyzed through Monte-Carlo simulation.The simulation results show that the measurement error of line-of-sight angle has the largest influence on the localization accuracy.The localization accuracy decreases with the increase in quadrant elevation angle.However,the maximum localization accuracy is less than 7 m.The proposed algorithm meets the accuracy and real-time requirements of target localization.展开更多
Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic character...Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.展开更多
基金The National Natural Science Foundation of China(Project No.52102436)The Natural Science Foundation of Shanghai(Project No.23ZR1462700)+3 种基金The National Key Laboratory Open Fund for Strength and Structural Integrity(Project No.ASSIKFJJ202304006)The Shanghai Aerospace Science and Technology Innovation Fund(Project No.SAST2022-031)The National Key Laboratory of Space Intelligent Control(Project No.2023-JCJQ-LB-006-14)The Shanghai Key Laboratory of Spacecraft Mechanism(Project No.YY-F805202210025)。
文摘A new terminal guidance law is proposed based on a solid propellant pulse engine and an improved proportional navigation method to address the terminal guidance issue for kinetic interceptors.On this basis,the start-stop curve of the pulse motor during the terminal guidance process is designed,along with its start-up logic.The effectiveness of the proposed guidance strategy is verified through simulation.
基金supported by the Nationa Natural Science Foundation of China(60434010)Outstanding Youth Fund of Heilongjiang Province(JC200606)
文摘Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approach for missile with terminal impact angle constraint is proposed.First,a mathematical model of an integrated guidance and control model in pitch plane is established,and then nonlinear transformation is employed to transform the mathematical model into a standard form suitable for sliding mode control method design.A sufficient condition for the existence of linear sliding surface is given in terms of linear matrix inequalities(LMIs),based on which the corresponding reaching motion controller is also developed.To verify the effectiveness of the proposed integrated design scheme,the numerical simulation of missile is made.The simulation results demonstrate that the proposed guidance and control law can guide missile to hit the target with desired impact angle and desired flight attitude angle simultaneously.
基金Sponsored by National Basic Research Program of China (6139001012)
文摘A deceptive pull-off jamming method to terminal guidance radar is put forward in this paper.The design rules about the important jamming parameters are discussed in detail,including the number of the decoy targets in range dimension,the velocity of the range gate pull-off,and the number of the decoy targets in velocity dimension and the velocity of the Doppler frequency pull-off.Also,the steps to design these parameters are brought out.The rules and design procedure discussed in this paper have important meaning for the choice of the reasonable jamming parameters in the practical applications,which can help to obtain good jamming effect.
基金supported by the National Natural Science Foundation of China(6160150571501184)the National Aviation Science Foundation of China(20155196022)
文摘A novel integrated guidance and control (IGC) design method is proposed to solve problems of low control accuracy for a suicide unmanned combat aerial vehicle (UCAV) in the terminal attack stage. First of all, the IGC system model of the UCAV is built based on the three-channel independent design idea, which reduces the difficulties of designing the controller. Then, IGC control laws are designed using the trajectory linearization control (TLC). A nonlinear disturbance observer (NDO) is introduced to the IGC controller to reject various uncertainties, such as the aerodynamic parameter perturbation and the measurement error interference. The stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the proposed IGC design method is verified in a terminal attack mission of the suicide UCAV. Finally, simulation results demonstrate the superiority and effectiveness in the aspects of guidance accuracy and system robustness.
文摘A trajectory shaping guidance law based on virtua angle (TSGLBVA) is proposed for a re-entry vehicle with the constraints of terminal impact angles and their time derivatives. In the view of differential properties of the maneuvering trajectory, a virtual angle and a virtual radius are defined. Also, the shaping trajectory of the vehicle is established by the polynomials of the virtual angle. Then, four optimized parameters are selected according to the theorem of parameters transformation presented in this paper. Finally, a convergent variant of the Nelder-Mead algorithm is adopted to obtain the reference trajectory, and a trajectory feedback tracking guidance law is designed. The simulation results demonstrate that the TSGLBVA ensures the re-entry vehicle to impact a target precisely from a specified direction with smal terminal load factor command, as well as to obtain a maximum or constrained terminal velocity according to various requirements.
基金Sponsored by the National Security Academic Foundation(Grant No.11176012)the CALT University Joint innovation Foundation(Grant No.CALT 201302)
文摘In this paper,an optimal guidance law for missiles with impact angle and miss distance constraints is proposed to achieve the maximal terminal velocity. The normal acceleration command that includes the timevarying coefficients is introduced to satisfy the desired impact angle as well as zero miss distance according to the geometric relation and relative motion parameters between missile and target. The problem is formulated as an optimal control problem by defining the angle of velocity error and flight-path angle as state variables and maximizing a performance index of the terminal velocity. The analytical form of the proposed guidance law is obtained as the solution of the optimal control problem combining optimal control theory and numerical value computation method. Nonlinear simulations of various situations demonstrate the performance and feasibility of the proposed optimal guidance law.
基金supported by the Defense Science and Technology Key Laboratory Fund of Luoyang Electro-Optical Equipment Institute,Aviation Industry Corporation of China (6142504200108)。
文摘In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary target. First, to decouple constraints of the FOV angle and the terminal lateral acceleration, the third-order polynomial with respect to the line-ofsight(LOS) angle is introduced. Based on an analysis of the relationship between the looking angle and the guidance coefficient,the boundary of the coefficient that satisfies the FOV constraint is obtained. The terminal guidance law coefficient is used to guarantee the convergence of the terminal conditions. Furthermore, the proposed law can be implemented under bearingsonly information, as the guidance command does not involve the relative range and the LOS angle rate. Finally, numerical simulations are performed based on a kinematic vehicle model to verify the effectiveness of the guidance law. Overall, the work offers an easily implementable guidance law with closed-form guidance gains, which is suitable for engineering applications.
基金supported by the National Natural Science Foundation of China(61101186)the Specialized Research Fund for the Doctoral Program of Higher Education(20134307110012)
文摘Feature aided design of estimators and guidance laws can significantly improve the interception performance of the terminal guidance system. The achieved enhancement can be effectively assessed by observability analysis methods. This paper first analyzes and discusses the existing assessment methods in a typical endgame scenario with target orientation observations. To get over their deficiencies, a novel singular value decomposition(SVD) method is proposed. Employing both theoretical analysis and numerical simulation, the proposed method can represent the degree of state observability which is enhanced by integrating target features more completely and quantitatively.
文摘This paper presents an integrated guidance and control model for a flexible hypersonic vehicle with terminal angular constraints.The integrated guidance and control model is bounded and the dead-zone input nonlinearity is considered in the system dynamics.The line of sight angle,line of sight angle rate,attack angle and pitch rate are involved in the integrated guidance and control system.The controller is designed with a backstepping method,in which a first order filter is employed to avoid the differential explosion.The full tuned radial basis function(RBF)neural network(NN)is used to approximate the system dynamics with robust item coping with the reconstruction errors,the exactitude model requirement is reduced in the controller design.In the last step of backstepping method design,the adaptive control with Nussbaum function is used for the unknown dynamics with a time-varying control gain function.The uniform ultimate boundedness stability of the control system is proved.The simulation results validate the effectiveness of the controller design.
基金co-supported by the National Defense Basic Scientific Research Project,China(No.JCKY2020903B002)the National Natural Science Foundation of China(Nos.61973100,62273118 and 12150008)。
文摘Focusing on the non-concave trajectory constraint,a sliding-mode-based nonsingular feedback fast fixed-time three-dimensional terminal guidance of rotor unmanned aerial vehicle landing,planetary landing and spacecraft rendezvous and docking terminal phase with external disturbance is investigated in this paper.Firstly,a fixed-time observer based on real-time differentiator is developed to compensate for the external disturbance,whose estimation error can converge to zero after a time independent of the initial state.Then,a sliding surface ensuring fixed-time convergence is presented.This sliding surface can guarantee that the vehicle achieves a non-concave trajectory,which is better for avoiding collision and maintaining the visibility of the landing site or docking port.Next,the nonsingular guidance ensuring the fixed-time convergence of the sliding surface is proposed,which is continuous and chatter free.At last,three numerical simulations of Mars landing are performed to validate the effectiveness and correctness of the designed scheme.
基金partially supported by the Spanish Ministry of Economy and Competitiveness under grant number DPI2015-64170-R(MINECO/FEDER)
文摘This paper presents an Iterative Learning Control design applied to homing guidance of missiles against maneuvering targets. According to numerical experiments, although an increase of the control energies is appreciated with respect to a previous published base controller for comparison, this strategy, which is simple to realize, is able to reduce the time to reach the head-on condition to target destruction. This fact is important to minimize the missile lateral force-level to fulfill engaging in hyper-sonic target persecutions.
文摘A target localization algorithm,which uses the measurement information from onboard GPS and onboard laser detector to acquire the target position,is proposed to obtain the accurate position of ground target in real time in the trajectory correction process of semi-active laser terminal correction projectile.A target localization model is established according to projectile position,attitude and line-of-sight angle.The effects of measurement errors of projectile position,attitude and line-of-sight angle on localization accuracy at different quadrant elevation angles are analyzed through Monte-Carlo simulation.The simulation results show that the measurement error of line-of-sight angle has the largest influence on the localization accuracy.The localization accuracy decreases with the increase in quadrant elevation angle.However,the maximum localization accuracy is less than 7 m.The proposed algorithm meets the accuracy and real-time requirements of target localization.
基金supported by Naval Weapons and Equipment Pre-Research Project(Grant No.3020801010105).
文摘Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.