The paper presents a novel anisotropic diffusion approach to the problem of ultrasound images denoising based on the polar-coordinate representation.Local gradients based on the polar coordinate are introduced and the...The paper presents a novel anisotropic diffusion approach to the problem of ultrasound images denoising based on the polar-coordinate representation.Local gradients based on the polar coordinate are introduced and they are more suitable for ultrasound images than horizontal gradients and vertical gradients commonly used in anisotropic diffusion methods.Moreover,an adaptive adjustment scheme for the threshold parameter in conduction functions is presented according to the incident angle of the ultrasonic beam with respect to the organ surface.Furthermore,based on the structure matrix,an edge-adaptive diffusion model is introduced,which can selectively preserve the edge from the blurring or smooth noise.Experimental results of real ultrasound images show the validity of the presented approach,which takes the physical imaging mechanism of ultrasonic devices into account.展开更多
In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second...In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model.展开更多
In order to effectively restore color noisy images with the mixture of Gaussian noise and impulse noise,a new algorithm is proposed using the quaternion-based holistic processing idea for color images.First,a color im...In order to effectively restore color noisy images with the mixture of Gaussian noise and impulse noise,a new algorithm is proposed using the quaternion-based holistic processing idea for color images.First,a color image is represented by a pure quaternion matrix.Secondly,according to the different characteristics of the Gaussian noise and the impulse noise,an algorithm based on quaternion directional vector order statistics is used to detect the impulse noise. Finally,the quaternion optimal weights non-local means filter (QOWNLMF)for Gaussian noise removal is improved for the mixed noise removal.The detected impulse noise pixels are not considered in the calculation of weights.Experimental results on five standard images demonstrate that the proposed algorithm performs better than the commonly used robust outlyingness ratio-nonlocal means (ROR-NLM)algorithm and the optimal weights mixed filter (OWMF).展开更多
In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoi...In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.展开更多
In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified medi...In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.展开更多
Rather than attempting to separate signal from noise in the spatial domain, it is often advantageous to work in a transform domain. Building on previous work, a novel denoising method based on local adaptive least squ...Rather than attempting to separate signal from noise in the spatial domain, it is often advantageous to work in a transform domain. Building on previous work, a novel denoising method based on local adaptive least squares support vector regression is proposed. Investigation on real images contaminated by Gaussian noise has demonstrated that the proposed method can achieve an acceptable trade off between the noise removal and smoothing of the edges and details.展开更多
Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation ...Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation relevant inter-scale is presented. Firstly, we used directional median filter to effectively reduce impulse noise in the spatial domain, which is the main cause of noise in mine. Secondly, we used a Wiener filtration method to mainly reduce the Gaussian noise, and then finally used a multi-wavelet transform to minimize the remaining noise of low-light images in the transform domain. This multi-level image noise reduction method combines spatial and transform domain denoising to enhance benefits, and effectively reduce impulse noise and Gaussian noise in a coal mine, while retaining good detailed image characteristics of the underground for improving quality of images with mixing noise and effective low-light environment.展开更多
In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and ...In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and bilateral denoising. First, the wavelet transform is adopted to decompose the image of refuge chamber, of which low frequency component remains unchanged. Then, three high-frequency components are treated by bilateral filtering, and the image is reconstructed. The result shows that the combination of bilateral filtering and wavelet transform for image denoising can better retain the details which are included in the image, while providing better visual effect. This is superior to using either bilateral filtering or wavelet transform alone. It is useful for perfecting emergency refuge system of coal mines.展开更多
Graph filtering,which is founded on the theory of graph signal processing,is proved as a useful tool for image denoising.Most graph filtering methods focus on learning an ideal lowpass filter to remove noise,where cle...Graph filtering,which is founded on the theory of graph signal processing,is proved as a useful tool for image denoising.Most graph filtering methods focus on learning an ideal lowpass filter to remove noise,where clean images are restored from noisy ones by retaining the image components in low graph frequency bands.However,this lowpass filter has limited ability to separate the low-frequency noise from clean images such that it makes the denoising procedure less effective.To address this issue,we propose an adaptive weighted graph filtering(AWGF)method to replace the design of traditional ideal lowpass filter.In detail,we reassess the existing low-rank denoising method with adaptive regularizer learning(ARLLR)from the view of graph filtering.A shrinkage approach subsequently is presented on the graph frequency domain,where the components of noisy image are adaptively decreased in each band by calculating their component significances.As a result,it makes the proposed graph filtering more explainable and suitable for denoising.Meanwhile,we demonstrate a graph filter under the constraint of subspace representation is employed in the ARLLR method.Therefore,ARLLR can be treated as a special form of graph filtering.It not only enriches the theory of graph filtering,but also builds a bridge from the low-rank methods to the graph filtering methods.In the experiments,we perform the AWGF method with a graph filter generated by the classical graph Laplacian matrix.The results show our method can achieve a comparable denoising performance with several state-of-the-art denoising methods.展开更多
An adaptive image denosing technique was proposed to achieve the tradeoff between details retain and noises removal. In order to achieve this objective, the contourlet transform was introduced and a new threshold meth...An adaptive image denosing technique was proposed to achieve the tradeoff between details retain and noises removal. In order to achieve this objective, the contourlet transform was introduced and a new threshold method, namely CWinShrink, is presented. It shrinks the contourlet coefficients with adaptive shrinkage factors. The shrinkage factors were calculated with reference to the sum of squares of the contourlet coefficients within the neighborhood window. This approach achieves enhanced results for images those are corrupted with additive Gaussian noise. In numerical comparisons with various methods, for a set of noisy images (the PSNR range fi'om 10.86dB to 26.91dB) , the presented method outperforms VisuShrink and Wiener filter in terms of the PSNR. Experiments also show that this method not only keeps the details of image but also yields denoised images with better visual quality.展开更多
Classic non-local means (CNLM) algorithm uses the inherent self-similarity in images for noise removal. The denoised pixel value is estimated through the weighted average of all the pixels in its non-local neighborhoo...Classic non-local means (CNLM) algorithm uses the inherent self-similarity in images for noise removal. The denoised pixel value is estimated through the weighted average of all the pixels in its non-local neighborhood. In the CNLM algorithm, the differences between the pixel value and the distance of the pixel to the center are both taken into consideration to calculate the weighting coefficients. However, the Gaussian kernel cannot reflect the information of edge and structure due to its isotropy, and it has poor performance in flat regions. In this paper, an improved non-local means algorithm based on local edge direction is presented for image denoising. In edge and structure regions, the steering kernel regression (SKR) coefficients are used to calculate the weights, and in flat regions the average kernel is used. Experiments show that the proposed algorithm can effectively protect edge and structure while removing noises better when compared with the CNLM algorithm.展开更多
In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and trans...In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection.展开更多
In order to improve the quality of low-dose computational tomography (CT)images, the paper proposes an improved image denoising approach based on WGAN-gpwith Wasserstein distance. For improving the training and the co...In order to improve the quality of low-dose computational tomography (CT)images, the paper proposes an improved image denoising approach based on WGAN-gpwith Wasserstein distance. For improving the training and the convergence efficiency, thegiven method introduces the gradient penalty term to WGAN network. The novelperceptual loss is introduced to make the texture information of the low-dose imagessensitive to the diagnostician eye. The experimental results show that compared with thestate-of-art methods, the time complexity is reduced, and the visual quality of low-doseCT images is significantly improved.展开更多
Sparse representation models have been shown promising results for image denoising. However, conventional sparse representation-based models cannot obtain satisfactory estimations for sparse coefficients and the dicti...Sparse representation models have been shown promising results for image denoising. However, conventional sparse representation-based models cannot obtain satisfactory estimations for sparse coefficients and the dictionary. To address this weakness, in this paper, we propose a novel fractional-order sparse representation(FSR) model. Specifically, we cluster the image patches into K groups, and calculate the singular values for each clean/noisy patch pair in the wavelet domain. Then the uniform fractional-order parameters are learned for each cluster.Then a novel fractional-order sample space is constructed using adaptive fractional-order parameters in the wavelet domain to obtain more accurate sparse coefficients and dictionary for image denoising. Extensive experimental results show that the proposed model outperforms state-of-the-art sparse representation-based models and the block-matching and 3D filtering algorithm in terms of denoising performance and the computational efficiency.展开更多
In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. ...In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. Based upon the close connection between optimization function of denois- ing problem and regularization parameter, an updating model is built to select the regularized param- eter. Both the parameter and the objective function are dynamically updated in alternating minimiza- tion iterations, consequently, it can make the algorithm work in different SNR environments. Mean- while, a strategy for choosing the initial regularization parameter is presented. Considering Morozov discrepancy principle, a convex function with respect to the regularization parameter is modeled. Via the optimization method, it is easy and fast to find the convergence value of parameter, which is suitable for the iterative image denoising algorithm. Comparing with several state-of-the-art algo- rithms, many experiments confirm that the denoising algorithm with the proposed parameter selec- tion is highly effective to evaluate peak signal-to-noise ratio (PSNR) and structural similarity展开更多
With the explosion in the number of digital images taken every day,the demand for more accurate and visually pleasing images is increasing.However,the images captured by modern cameras are inevitably degraded by noise...With the explosion in the number of digital images taken every day,the demand for more accurate and visually pleasing images is increasing.However,the images captured by modern cameras are inevitably degraded by noise,which leads to deteriorated visual image quality.Therefore,work is required to reduce noise without losing image features(edges,corners,and other sharp structures).So far,researchers have already proposed various methods for decreasing noise.Each method has its own advantages and disadvantages.In this paper,we summarize some important research in the field of image denoising.First,we give the formulation of the image denoising problem,and then we present several image denoising techniques.In addition,we discuss the characteristics of these techniques.Finally,we provide several promising directions for future research.展开更多
In recent years,image restoration has become a huge subject,and finite hybrid model has been widely used in image denoising because of its easy modeling and strong explanatory results.The gaussian mixture model is the...In recent years,image restoration has become a huge subject,and finite hybrid model has been widely used in image denoising because of its easy modeling and strong explanatory results.The gaussian mixture model is the most common one.The existing image denoising methods usually assume that each component of the natural image is subject to the gaussian mixture model(GMM).However,this approach is not entirely reasonable.It is well known that most natural images are complex and their distribution is not entirely gaussian.As a result,there are still many problems that GMM cannot solve.This paper tries to improve the finite mixture model and introduces the asymmetric gaussian mixture model into it.Since the asymmetric gaussian mixture model can simulate the asymmetric distribution on the basis of the gaussian mixture model,it is more consistent with the natural image data,so the denoising effect of the natural complex image is better.We carried out image denoising experiments under different noise scales and types,and found that the asymmetric gaussian mixture model has better denoising effect and performance.展开更多
Image denoising is the basic problem of image processing. Quaternion wavelet transform is a new kind of multiresolution analysis tools. Image via quaternion wavelet transform, wavelet coefficients both in intrascale a...Image denoising is the basic problem of image processing. Quaternion wavelet transform is a new kind of multiresolution analysis tools. Image via quaternion wavelet transform, wavelet coefficients both in intrascale and in interscale have certain correla- tions. First, according to the correlation of quaternion wavelet coefficients in interscale, non-Ganssian distribution model is used to model its correlations, and the coefficients are divided into important and unimportance coefficients. Then we use the non-Gaussian distribution model to model the important coefficients and its adjacent coefficients, and utilize the MAP method estimate original image wavelet coefficients from noisy coefficients, so as to achieve the purpose of denoising. Experimental results show that our al- gorithm outperforms the other classical algorithms in peak signal-to-noise ratio and visual quality.展开更多
Deep convolutional neural networks(CNNs)with strong learning abilities have been used in the field of image denoising.However,some CNNs depend on a single deep network to train an image denoising model,which will have...Deep convolutional neural networks(CNNs)with strong learning abilities have been used in the field of image denoising.However,some CNNs depend on a single deep network to train an image denoising model,which will have poor performance in complex screens.To address this problem,we propose a hybrid denoising CNN(HDCNN).HDCNN is composed of a dilated block(DB),RepVGG block(RVB),feature refinement block(FB),and a single convolution.DB combines a dilated convolution,batch normalization(BN),common convolutions,and activation function of ReLU to obtain more context information.RVB uses parallel combination of convolution,BN,and ReLU to extract complementary width features.FB is used to obtain more accurate information via refining obtained feature from the RVB.A single convolution collaborates a residual learning operation to construct a clean image.These key components make the HDCNN have good performance in image denoising.Experiment shows that the proposed HDCNN enjoys good denoising effect in public data sets.展开更多
In order to enhance the image contrast and quality, inspired by the interesting observation that an increase in noise intensity tends to narrow the dynamic range of the local standard deviation (LSD) of an image, a tr...In order to enhance the image contrast and quality, inspired by the interesting observation that an increase in noise intensity tends to narrow the dynamic range of the local standard deviation (LSD) of an image, a tree-structured group sparse optimization model in the wavelet domain is proposed for image denoising. The compressed dynamic range of LSD caused by noise leads to a contrast reduction in the image, as well as the degradation of image quality. To equalize the LSD distribution, sparsity on the LSD matrix is enforced by employing a mixed norm as a regularizer in the image denoising model. This mixed norm introduces a coupling between wavelet coefficients and provides a tree-structured group scheme. The alternating direction method of multipliers (ADMM) and the fast iterative shrinkage-thresholding algorithm (FISTA) are applied to solve the group sparse model based on different cases. Several experiments are conducted to verify the effectiveness of the proposed model. The experimental results indicate that the proposed group sparse model can efficiently equalize the LSD distribution and therefore can improve the image contrast and quality.展开更多
文摘The paper presents a novel anisotropic diffusion approach to the problem of ultrasound images denoising based on the polar-coordinate representation.Local gradients based on the polar coordinate are introduced and they are more suitable for ultrasound images than horizontal gradients and vertical gradients commonly used in anisotropic diffusion methods.Moreover,an adaptive adjustment scheme for the threshold parameter in conduction functions is presented according to the incident angle of the ultrasonic beam with respect to the organ surface.Furthermore,based on the structure matrix,an edge-adaptive diffusion model is introduced,which can selectively preserve the edge from the blurring or smooth noise.Experimental results of real ultrasound images show the validity of the presented approach,which takes the physical imaging mechanism of ultrasonic devices into account.
文摘In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model.
基金The National Natural Science Foundation of China(No.61572258,61173141,61271312,61232016,61272421)the Natural Science Foundation of Jiangsu Province(No.BK2012858,BK20151530)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.13KJB520015)Open Fund of Jiangsu Engineering Center of Network Monitoring(No.KJR1404)
文摘In order to effectively restore color noisy images with the mixture of Gaussian noise and impulse noise,a new algorithm is proposed using the quaternion-based holistic processing idea for color images.First,a color image is represented by a pure quaternion matrix.Secondly,according to the different characteristics of the Gaussian noise and the impulse noise,an algorithm based on quaternion directional vector order statistics is used to detect the impulse noise. Finally,the quaternion optimal weights non-local means filter (QOWNLMF)for Gaussian noise removal is improved for the mixed noise removal.The detected impulse noise pixels are not considered in the calculation of weights.Experimental results on five standard images demonstrate that the proposed algorithm performs better than the commonly used robust outlyingness ratio-nonlocal means (ROR-NLM)algorithm and the optimal weights mixed filter (OWMF).
基金The National Natural Science Foundation of China(No.60702069)the Research Project of Department of Education of Zhe-jiang Province (No.20060601)+1 种基金the Natural Science Foundation of Zhe-jiang Province (No.Y1080851)Shanghai International Cooperation onRegion of France (No.06SR07109)
文摘In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.
基金Project(2016JJ4074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(14C0920)supported by the Hunan Provincial Education Department,ChinaProject(61771191)supported by the National Natural Science Foundation of China
文摘In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.
基金Supported by the Foundation of Hubei Provincial Department of Education(No.2003EB0018).
文摘Rather than attempting to separate signal from noise in the spatial domain, it is often advantageous to work in a transform domain. Building on previous work, a novel denoising method based on local adaptive least squares support vector regression is proposed. Investigation on real images contaminated by Gaussian noise has demonstrated that the proposed method can achieve an acceptable trade off between the noise removal and smoothing of the edges and details.
基金provided by the Heilongjiang Provincial Department of Education Planning Project (No.GBC1212076)the Central University Research Project (No.00-800015Q7)
文摘Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation relevant inter-scale is presented. Firstly, we used directional median filter to effectively reduce impulse noise in the spatial domain, which is the main cause of noise in mine. Secondly, we used a Wiener filtration method to mainly reduce the Gaussian noise, and then finally used a multi-wavelet transform to minimize the remaining noise of low-light images in the transform domain. This multi-level image noise reduction method combines spatial and transform domain denoising to enhance benefits, and effectively reduce impulse noise and Gaussian noise in a coal mine, while retaining good detailed image characteristics of the underground for improving quality of images with mixing noise and effective low-light environment.
基金the Scientific Research Project of Zhejiang Education Department of China (No. Y20108569)the Soft Science Project of Ningbo of China (No. 2011A1058)the Soft Science of Zhejiang Association for Science and Technology of China (No. KX12E-10)
文摘In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and bilateral denoising. First, the wavelet transform is adopted to decompose the image of refuge chamber, of which low frequency component remains unchanged. Then, three high-frequency components are treated by bilateral filtering, and the image is reconstructed. The result shows that the combination of bilateral filtering and wavelet transform for image denoising can better retain the details which are included in the image, while providing better visual effect. This is superior to using either bilateral filtering or wavelet transform alone. It is useful for perfecting emergency refuge system of coal mines.
基金This work is supported by National Natural Science Foundation of China[61673108,41706103]The initials of authors who received these grants are LZ and YZ,respectively.It is also supported by Natural Science Foundation of Jiangsu Province,China[BK20170306]The initials of author who received this grant are YZ.
文摘Graph filtering,which is founded on the theory of graph signal processing,is proved as a useful tool for image denoising.Most graph filtering methods focus on learning an ideal lowpass filter to remove noise,where clean images are restored from noisy ones by retaining the image components in low graph frequency bands.However,this lowpass filter has limited ability to separate the low-frequency noise from clean images such that it makes the denoising procedure less effective.To address this issue,we propose an adaptive weighted graph filtering(AWGF)method to replace the design of traditional ideal lowpass filter.In detail,we reassess the existing low-rank denoising method with adaptive regularizer learning(ARLLR)from the view of graph filtering.A shrinkage approach subsequently is presented on the graph frequency domain,where the components of noisy image are adaptively decreased in each band by calculating their component significances.As a result,it makes the proposed graph filtering more explainable and suitable for denoising.Meanwhile,we demonstrate a graph filter under the constraint of subspace representation is employed in the ARLLR method.Therefore,ARLLR can be treated as a special form of graph filtering.It not only enriches the theory of graph filtering,but also builds a bridge from the low-rank methods to the graph filtering methods.In the experiments,we perform the AWGF method with a graph filter generated by the classical graph Laplacian matrix.The results show our method can achieve a comparable denoising performance with several state-of-the-art denoising methods.
基金Sponsored by Key Lab of Optoelectronic Technology &System,Department of Education, China(Grant No.200373 -1 -2).
文摘An adaptive image denosing technique was proposed to achieve the tradeoff between details retain and noises removal. In order to achieve this objective, the contourlet transform was introduced and a new threshold method, namely CWinShrink, is presented. It shrinks the contourlet coefficients with adaptive shrinkage factors. The shrinkage factors were calculated with reference to the sum of squares of the contourlet coefficients within the neighborhood window. This approach achieves enhanced results for images those are corrupted with additive Gaussian noise. In numerical comparisons with various methods, for a set of noisy images (the PSNR range fi'om 10.86dB to 26.91dB) , the presented method outperforms VisuShrink and Wiener filter in terms of the PSNR. Experiments also show that this method not only keeps the details of image but also yields denoised images with better visual quality.
基金National Key Research and Development Program of China(No.2016YFC0101601)Fund for Shanxi“1331 Project”Key Innovative Research Team+1 种基金Shanxi Province Science Foundation for Youths(No.201601D021080)Universities Science and Technology Innovation Project of Shanxi Province(No.2017107)
文摘Classic non-local means (CNLM) algorithm uses the inherent self-similarity in images for noise removal. The denoised pixel value is estimated through the weighted average of all the pixels in its non-local neighborhood. In the CNLM algorithm, the differences between the pixel value and the distance of the pixel to the center are both taken into consideration to calculate the weighting coefficients. However, the Gaussian kernel cannot reflect the information of edge and structure due to its isotropy, and it has poor performance in flat regions. In this paper, an improved non-local means algorithm based on local edge direction is presented for image denoising. In edge and structure regions, the steering kernel regression (SKR) coefficients are used to calculate the weights, and in flat regions the average kernel is used. Experiments show that the proposed algorithm can effectively protect edge and structure while removing noises better when compared with the CNLM algorithm.
基金supported by the National Natural Science Foundation of China(Nos.11975292,12222512)the CAS"Light of West Chin"Program+1 种基金the CAS Pioneer Hundred Talent Programthe Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)。
文摘In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection.
基金supported by National Natural Science Foundation ofChina (61672279)Project of “Six Talents Peak” in Jiangsu (2012-WLW-023)OpenFoundation of State Key Laboratory of Hydrology-Water Resources and HydraulicEngineering, Nanjing Hydraulic Research Institute, China (2016491411).
文摘In order to improve the quality of low-dose computational tomography (CT)images, the paper proposes an improved image denoising approach based on WGAN-gpwith Wasserstein distance. For improving the training and the convergence efficiency, thegiven method introduces the gradient penalty term to WGAN network. The novelperceptual loss is introduced to make the texture information of the low-dose imagessensitive to the diagnostician eye. The experimental results show that compared with thestate-of-art methods, the time complexity is reduced, and the visual quality of low-doseCT images is significantly improved.
基金supported by the National Natural Science Foundation of China(61573219,61402203,61401209,61701192,61671274)the Opening Fund of Shandong Provincial Key Laboratory of Network Based Intelligent Computing+2 种基金the Fostering Project of Dominant DisciplineTalent Team of Shandong Province Higher Education InstitutionsFostering Project of Dominant Discipline and Talent Team of SDUFE
文摘Sparse representation models have been shown promising results for image denoising. However, conventional sparse representation-based models cannot obtain satisfactory estimations for sparse coefficients and the dictionary. To address this weakness, in this paper, we propose a novel fractional-order sparse representation(FSR) model. Specifically, we cluster the image patches into K groups, and calculate the singular values for each clean/noisy patch pair in the wavelet domain. Then the uniform fractional-order parameters are learned for each cluster.Then a novel fractional-order sample space is constructed using adaptive fractional-order parameters in the wavelet domain to obtain more accurate sparse coefficients and dictionary for image denoising. Extensive experimental results show that the proposed model outperforms state-of-the-art sparse representation-based models and the block-matching and 3D filtering algorithm in terms of denoising performance and the computational efficiency.
基金Supported by the National High Technology Research and Development Program of China(863Program)(2012AA8012011C)
文摘In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. Based upon the close connection between optimization function of denois- ing problem and regularization parameter, an updating model is built to select the regularized param- eter. Both the parameter and the objective function are dynamically updated in alternating minimiza- tion iterations, consequently, it can make the algorithm work in different SNR environments. Mean- while, a strategy for choosing the initial regularization parameter is presented. Considering Morozov discrepancy principle, a convex function with respect to the regularization parameter is modeled. Via the optimization method, it is easy and fast to find the convergence value of parameter, which is suitable for the iterative image denoising algorithm. Comparing with several state-of-the-art algo- rithms, many experiments confirm that the denoising algorithm with the proposed parameter selec- tion is highly effective to evaluate peak signal-to-noise ratio (PSNR) and structural similarity
基金This work is supported by NSFC Joint Fund with Zhejiang Integration of Informatization and Industrialization under Key Project(No.U1609218)the National Nature Science Foundation of China(No.61602277)Shandong Provincial Natural Science Foundation of China(No.ZR2016FQ12).
文摘With the explosion in the number of digital images taken every day,the demand for more accurate and visually pleasing images is increasing.However,the images captured by modern cameras are inevitably degraded by noise,which leads to deteriorated visual image quality.Therefore,work is required to reduce noise without losing image features(edges,corners,and other sharp structures).So far,researchers have already proposed various methods for decreasing noise.Each method has its own advantages and disadvantages.In this paper,we summarize some important research in the field of image denoising.First,we give the formulation of the image denoising problem,and then we present several image denoising techniques.In addition,we discuss the characteristics of these techniques.Finally,we provide several promising directions for future research.
基金This work was partly supported by the National Natural Science Foundation of China under Grants 61672293.
文摘In recent years,image restoration has become a huge subject,and finite hybrid model has been widely used in image denoising because of its easy modeling and strong explanatory results.The gaussian mixture model is the most common one.The existing image denoising methods usually assume that each component of the natural image is subject to the gaussian mixture model(GMM).However,this approach is not entirely reasonable.It is well known that most natural images are complex and their distribution is not entirely gaussian.As a result,there are still many problems that GMM cannot solve.This paper tries to improve the finite mixture model and introduces the asymmetric gaussian mixture model into it.Since the asymmetric gaussian mixture model can simulate the asymmetric distribution on the basis of the gaussian mixture model,it is more consistent with the natural image data,so the denoising effect of the natural complex image is better.We carried out image denoising experiments under different noise scales and types,and found that the asymmetric gaussian mixture model has better denoising effect and performance.
基金Supported by Natural Science Foundation of Anhui (No.11040606M06)
文摘Image denoising is the basic problem of image processing. Quaternion wavelet transform is a new kind of multiresolution analysis tools. Image via quaternion wavelet transform, wavelet coefficients both in intrascale and in interscale have certain correla- tions. First, according to the correlation of quaternion wavelet coefficients in interscale, non-Ganssian distribution model is used to model its correlations, and the coefficients are divided into important and unimportance coefficients. Then we use the non-Gaussian distribution model to model the important coefficients and its adjacent coefficients, and utilize the MAP method estimate original image wavelet coefficients from noisy coefficients, so as to achieve the purpose of denoising. Experimental results show that our al- gorithm outperforms the other classical algorithms in peak signal-to-noise ratio and visual quality.
基金supported in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2021A1515110079in part by the Fundamental Research Funds for the Central Universities under Grant D5000210966in part by the Basic Research Plan in Taicang under Grant TC2021JC23.
文摘Deep convolutional neural networks(CNNs)with strong learning abilities have been used in the field of image denoising.However,some CNNs depend on a single deep network to train an image denoising model,which will have poor performance in complex screens.To address this problem,we propose a hybrid denoising CNN(HDCNN).HDCNN is composed of a dilated block(DB),RepVGG block(RVB),feature refinement block(FB),and a single convolution.DB combines a dilated convolution,batch normalization(BN),common convolutions,and activation function of ReLU to obtain more context information.RVB uses parallel combination of convolution,BN,and ReLU to extract complementary width features.FB is used to obtain more accurate information via refining obtained feature from the RVB.A single convolution collaborates a residual learning operation to construct a clean image.These key components make the HDCNN have good performance in image denoising.Experiment shows that the proposed HDCNN enjoys good denoising effect in public data sets.
基金The National Natural Science Foundation of China(No.61701004,11504003)the Natural Science Foundation of Anhui Province(No.1708085QA15)
文摘In order to enhance the image contrast and quality, inspired by the interesting observation that an increase in noise intensity tends to narrow the dynamic range of the local standard deviation (LSD) of an image, a tree-structured group sparse optimization model in the wavelet domain is proposed for image denoising. The compressed dynamic range of LSD caused by noise leads to a contrast reduction in the image, as well as the degradation of image quality. To equalize the LSD distribution, sparsity on the LSD matrix is enforced by employing a mixed norm as a regularizer in the image denoising model. This mixed norm introduces a coupling between wavelet coefficients and provides a tree-structured group scheme. The alternating direction method of multipliers (ADMM) and the fast iterative shrinkage-thresholding algorithm (FISTA) are applied to solve the group sparse model based on different cases. Several experiments are conducted to verify the effectiveness of the proposed model. The experimental results indicate that the proposed group sparse model can efficiently equalize the LSD distribution and therefore can improve the image contrast and quality.