期刊文献+
共找到120篇文章
< 1 2 6 >
每页显示 20 50 100
Removal of Stripes in Remote Sensing Images Based on Statistics Combined with Image Enhancement
1
作者 Xiaofei QU Weiwei ZHAO +2 位作者 En LONG Meng SUN Guangling LAI 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第1期76-87,共12页
A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced t... A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced to provide a general baseline.Due to the differences in satellite sensors when producing images,subtle but inherent stripes can appear at the stitching positions between the sensors.These stitchingstripes cannot be eliminated by conventional relative radiometric calibration.The inherent stitching stripes cause difficulties in downstream tasks such as the segmentation,classification and interpretation of remote sensing images.Therefore,a method to remove the stripes based on statistics and a new image enhancement approach are proposed in this paper.First,the inconsistency in grayscales around stripes is eliminated with the statistical method.Second,the pixels within stripes are weighted and averaged based on updated pixel values to enhance the uniformity of the overall image radiation quality.Finally,the details of the images are highlighted by a new image enhancement method,which makes the whole image clearer.Comprehensive experiments are performed,and the results indicate that the proposed method outperforms the baseline approach in terms of visual quality and radiation correction accuracy. 展开更多
关键词 remote sensing images stripe removal STATISTICS image enhancement
下载PDF
Image enhancement with intensity transformation on embedding space
2
作者 Hanul Kim Yeji Jeon Yeong Jun Koh 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期101-115,共15页
In recent times,an image enhancement approach,which learns the global transformation function using deep neural networks,has gained attention.However,many existing methods based on this approach have a limitation:thei... In recent times,an image enhancement approach,which learns the global transformation function using deep neural networks,has gained attention.However,many existing methods based on this approach have a limitation:their transformation functions are too simple to imitate complex colour transformations between low-quality images and manually retouched high-quality images.In order to address this limitation,a simple yet effective approach for image enhancement is proposed.The proposed algorithm based on the channel-wise intensity transformation is designed.However,this transformation is applied to the learnt embedding space instead of specific colour spaces and then return enhanced features to colours.To this end,the authors define the continuous intensity transformation(CIT)to describe the mapping between input and output intensities on the embedding space.Then,the enhancement network is developed,which produces multi-scale feature maps from input images,derives the set of transformation functions,and performs the CIT to obtain enhanced images.Extensive experiments on the MIT-Adobe 5K dataset demonstrate that the authors’approach improves the performance of conventional intensity transforms on colour space metrics.Specifically,the authors achieved a 3.8%improvement in peak signal-to-noise ratio,a 1.8%improvement in structual similarity index measure,and a 27.5%improvement in learned perceptual image patch similarity.Also,the authors’algorithm outperforms state-of-the-art alternatives on three image enhancement datasets:MIT-Adobe 5K,Low-Light,and Google HDRþ. 展开更多
关键词 computer vision deep learning image enhancement image processing
下载PDF
Unsupervised Multi-Expert Learning Model for Underwater Image Enhancement
3
作者 Hongmin Liu Qi Zhang +2 位作者 Yufan Hu Hui Zeng Bin Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期708-722,共15页
Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ign... Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ignored that the R,G and B channels of underwater degraded images present varied degrees of degradation,due to the selective absorption for the light.To address this issue,we propose an unsupervised multi-expert learning model by considering the enhancement of each color channel.Specifically,an unsupervised architecture based on generative adversarial network is employed to alleviate the need for paired underwater images.Based on this,we design a generator,including a multi-expert encoder,a feature fusion module and a feature fusion-guided decoder,to generate the clear underwater image.Accordingly,a multi-expert discriminator is proposed to verify the authenticity of the R,G and B channels,respectively.In addition,content perceptual loss and edge loss are introduced into the loss function to further improve the content and details of the enhanced images.Extensive experiments on public datasets demonstrate that our method achieves more pleasing results in vision quality.Various metrics(PSNR,SSIM,UIQM and UCIQE) evaluated on our enhanced images have been improved obviously. 展开更多
关键词 Multi-expert learning underwater image enhancement unsupervised learning
下载PDF
More Than Lightening:A Self-Supervised Low-Light Image Enhancement Method Capable for Multiple Degradations
4
作者 Han Xu Jiayi Ma +3 位作者 Yixuan Yuan Hao Zhang Xin Tian Xiaojie Guo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期622-637,共16页
Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but ... Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but the collection of suitable normal-light images is difficult.In contrast,a self-supervised method breaks free from the reliance on normal-light data,resulting in more convenience and better generalization.Existing self-supervised methods primarily focus on illumination adjustment and design pixel-based adjustment methods,resulting in remnants of other degradations,uneven brightness and artifacts.In response,this paper proposes a self-supervised enhancement method,termed as SLIE.It can handle multiple degradations including illumination attenuation,noise pollution,and color shift,all in a self-supervised manner.Illumination attenuation is estimated based on physical principles and local neighborhood information.The removal and correction of noise and color shift removal are solely realized with noisy images and images with color shifts.Finally,the comprehensive and fully self-supervised approach can achieve better adaptability and generalization.It is applicable to various low light conditions,and can reproduce the original color of scenes in natural light.Extensive experiments conducted on four public datasets demonstrate the superiority of SLIE to thirteen state-of-the-art methods.Our code is available at https://github.com/hanna-xu/SLIE. 展开更多
关键词 Color correction low-light image enhancement self-supervised learning.
下载PDF
A Novel Multi-Stream Fusion Network for Underwater Image Enhancement
5
作者 Guijin Tang Lian Duan +1 位作者 Haitao Zhao Feng Liu 《China Communications》 SCIE CSCD 2024年第2期166-182,共17页
Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color... Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color correction and detail restoration. However,the existing enhancement algorithms cannot achieve the desired results. In order to solve the above problems, this paper proposes a multi-stream feature fusion network. First, an underwater image is preprocessed to obtain potential information from the illumination stream, color stream and structure stream by histogram equalization with contrast limitation, gamma correction and white balance, respectively. Next, these three streams and the original raw stream are sent to the residual blocks to extract the features. The features will be subsequently fused. It can enhance feature representation in underwater images. In the meantime, a composite loss function including three terms is used to ensure the quality of the enhanced image from the three aspects of color balance, structure preservation and image smoothness. Therefore, the enhanced image is more in line with human visual perception.Finally, the effectiveness of the proposed method is verified by comparison experiments with many stateof-the-art underwater image enhancement algorithms. Experimental results show that the proposed method provides superior results over them in terms of MSE,PSNR, SSIM, UIQM and UCIQE, and the enhanced images are more similar to their ground truth images. 展开更多
关键词 image enhancement multi-stream fusion underwater image
下载PDF
Topic highlight on texture and color enhancement imaging in gastrointestinal diseases
6
作者 Osamu Toyoshima Toshihiro Nishizawa Keisuke Hata 《World Journal of Gastroenterology》 SCIE CAS 2024年第14期1934-1940,共7页
Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for ga... Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for gastrointestinal disease identification in the clinical setting.A randomized controlled trial demonstrated improvements in the colorectal adenoma detection rate(ADR)and the mean number of adenomas per procedure(MAP)of TXI compared with those of white-light imaging(WLI)observation(58.7%vs 42.7%,adjusted relative risk 1.35,95%CI:1.17-1.56;1.36 vs 0.89,adjusted incident risk ratio 1.48,95%CI:1.22-1.80,respectively).A cross-over study also showed that the colorectal MAP and ADR in TXI were higher than those in WLI(1.5 vs 1.0,adjusted odds ratio 1.4,95%CI:1.2-1.6;58.2%vs 46.8%,1.5,1.0-2.3,respectively).A randomized controlled trial demonstrated non-inferiority of TXI to narrow-band imaging in the colorectal mean number of adenomas and sessile serrated lesions per procedure(0.29 vs 0.30,difference for non-inferiority-0.01,95%CI:-0.10 to 0.08).A cohort study found that scoring for ulcerative colitis severity using TXI could predict relapse of ulcerative colitis.A cross-sectional study found that TXI improved the gastric cancer detection rate compared to WLI(0.71%vs 0.29%).A cross-sectional study revealed that the sensitivity and accuracy for active Helicobacter pylori gastritis in TXI were higher than those of WLI(69.2%vs 52.5%and 85.3%vs 78.7%,res-pectively).In conclusion,TXI can improve gastrointestinal lesion detection and qualitative diagnosis.Therefore,further studies on the efficacy of TXI in clinical practice are required. 展开更多
关键词 Endoscopy Texture and color enhancement imaging White-light imaging Narrow-band imaging Colorectal neoplasm Gastric cancer Adenoma Ulcerative colitis Helicobacter infections Colonoscopy
下载PDF
Enhancing the Quality of Low-Light Printed Circuit Board Images through Hue, Saturation, and Value Channel Processing and Improved Multi-Scale Retinex
7
作者 Huichao Shang Penglei Li Xiangqian Peng 《Journal of Computer and Communications》 2024年第1期1-10,共10页
To address the issue of deteriorated PCB image quality in the quality inspection process due to insufficient or uneven lighting, we proposed an image enhancement fusion algorithm based on different color spaces. First... To address the issue of deteriorated PCB image quality in the quality inspection process due to insufficient or uneven lighting, we proposed an image enhancement fusion algorithm based on different color spaces. Firstly, an improved MSRCR method was employed for brightness enhancement of the original image. Next, the color space of the original image was transformed from RGB to HSV, followed by processing the S-channel image using bilateral filtering and contrast stretching algorithms. The V-channel image was subjected to brightness enhancement using adaptive Gamma and CLAHE algorithms. Subsequently, the processed image was transformed back to the RGB color space from HSV. Finally, the images processed by the two algorithms were fused to create a new RGB image, and color restoration was performed on the fused image. Comparative experiments with other methods indicated that the contrast of the image was optimized, texture features were more abundantly preserved, brightness levels were significantly improved, and color distortion was prevented effectively, thus enhancing the quality of low-lit PCB images. 展开更多
关键词 Low-Lit PCB images Spatial Transformation Image enhancement Image Fusion HSV
下载PDF
Classification COVID-19 Based on Enhancement X-Ray Images and Low Complexity Model
8
作者 Aymen Saad Israa SKamil +1 位作者 Ahmed Alsayat Ahmed Elaraby 《Computers, Materials & Continua》 SCIE EI 2022年第7期561-576,共16页
COVID-19 has been considered one of the recent epidemics that occurred at the last of 2019 and the beginning of 2020 that world widespread.This spread of COVID-19 requires a fast technique for diagnosis to make the ap... COVID-19 has been considered one of the recent epidemics that occurred at the last of 2019 and the beginning of 2020 that world widespread.This spread of COVID-19 requires a fast technique for diagnosis to make the appropriate decision for the treatment.X-ray images are one of the most classifiable images that are used widely in diagnosing patients’data depending on radiographs due to their structures and tissues that could be classified.Convolutional Neural Networks(CNN)is the most accurate classification technique used to diagnose COVID-19 because of the ability to use a different number of convolutional layers and its high classification accuracy.Classification using CNNs techniques requires a large number of images to learn and obtain satisfactory results.In this paper,we used SqueezNet with a modified output layer to classify X-ray images into three groups:COVID-19,normal,and pneumonia.In this study,we propose a deep learning method with enhance the features of X-ray images collected from Kaggle,Figshare to distinguish between COVID-19,Normal,and Pneumonia infection.In this regard,several techniques were used on the selected image samples which are Unsharp filter,Histogram equal,and Complement image to produce another view of the dataset.The Squeeze Net CNN model has been tested in two scenarios using the 13,437 X-ray images that include 4479 for each type(COVID-19,Normal and Pneumonia).In the first scenario,the model has been tested without any enhancement on the datasets.It achieved an accuracy of 91%.But,in the second scenario,the model was tested using the same previous images after being improved by several techniques and the performance was high at approximately 95%.The conclusion of this study is the used model gives higher accuracy results for enhanced images compared with the accuracy results for the original images.A comparison of the outcomes demonstrated the effectiveness of ourDLmethod for classifying COVID-19 based on enhanced X-ray images. 展开更多
关键词 COVID-19 X-RAY image enhancement CLASSIFICATION CNN SqueezNet model
下载PDF
Enhancement of Biomass Material Characterization Images Using an Improved U-Net
9
作者 Zuozheng Lian Hong Zhao +2 位作者 Qianjun Zhang Haizhen Wang E.Erdun 《Computers, Materials & Continua》 SCIE EI 2022年第7期1515-1528,共14页
For scanning electronmicroscopes with high resolution and a strong electric field,biomass materials under observation are prone to radiation damage from the electron beam.This results in blurred or non-viable images,w... For scanning electronmicroscopes with high resolution and a strong electric field,biomass materials under observation are prone to radiation damage from the electron beam.This results in blurred or non-viable images,which affect further observation of material microscopic morphology and characterization.Restoring blurred images to their original sharpness is still a challenging problem in image processing.Traditionalmethods can’t effectively separate image context dependency and texture information,affect the effect of image enhancement and deblurring,and are prone to gradient disappearance during model training,resulting in great difficulty in model training.In this paper,we propose the use of an improvedU-Net(U-shapedConvolutional Neural Network)to achieve image enhancement for biomass material characterization and restore blurred images to their original sharpness.The main work is as follows:use of depthwise separable convolution instead of standard convolution in U-Net to reduce model computation effort and parameters;embedding wavelet transform into the U-Net structure to separate image context and texture information,thereby improving image reconstruction quality;using dense multi-receptive field channel modules to extract image detail information,thereby better transmitting the image features and network gradients,and reduce the difficulty of training.The experiments show that the improved U-Net model proposed in this paper is suitable and effective for enhanced deblurring of biomass material characterization images.The PSNR(Peak Signal-to-noise Ratio)and SSIM(Structural Similarity)are enhanced as well. 展开更多
关键词 U-Net wavelet transform image enhancement biomass material characterization
下载PDF
Improved visibility of colorectal tumor by texture and color enhancement imaging with indigo carmine 被引量:2
10
作者 Takuma Hiramatsu Toshihiro Nishizawa +7 位作者 Yosuke Kataoka Shuntaro Yoshida Tatsuya Matsuno Hiroya Mizutani Hideki Nakagawa Hirotoshi Ebinuma Mitsuhiro Fujishiro Osamu Toyoshima 《World Journal of Gastrointestinal Endoscopy》 2023年第12期690-698,共9页
BACKGROUND Accurate diagnosis and early resection of colorectal polyps are important to prevent the occurrence of colorectal cancer.However,technical factors and morphological factors of polyps itself can lead to miss... BACKGROUND Accurate diagnosis and early resection of colorectal polyps are important to prevent the occurrence of colorectal cancer.However,technical factors and morphological factors of polyps itself can lead to missed diagnoses.Imageenhanced endoscopy and chromoendoscopy(CE)have been developed to facilitate an accurate diagnosis.There have been no reports on visibility using a combination of texture and color enhancement imaging(TXI)and CE for colorectal tumors.AIM To investigate the visibility of margins and surfaces with the combination of TXI and CE for colorectal lesions.METHODS This retrospective study included patients who underwent lower gastrointestinal endoscopy at the Toyoshima Endoscopy Clinic.We extracted polyps that were resected and diagnosed as adenomas or serrated polyps(hyperplastic polyps and sessile serrated lesions)from our endoscopic database.An expert endoscopist performed the lower gastrointestinal endoscopies and observed the lesion using white light imaging(WLI),TXI,CE,and TXI+CE modalities.Indigo carmine dye was used for CE.Three expert endoscopists rated the visibility of the margin and surface patterns in four ranks,from 1 to 4.The primary outcomes were the average visibility scores for the margin and surface patterns based on the WLI,TXI,CE,and TXI+CE observations.Visibility scores between the four modalities were compared by the Kruskal-Wallis and Dunn tests.RESULTS A total of 48 patients with 81 polyps were assessed.The histological subtypes included 50 tubular adenomas,16 hyperplastic polyps,and 15 sessile serrated lesions.The visibility scores for the margins based on WLI,TXI,CE,and TXI+CE were 2.44±0.93,2.90±0.93,3.37±0.74,and 3.75±0.49,respectively.The visibility scores for the surface based on WLI,TXI,CE,and TXI+CE were 2.25±0.80,2.84±0.84,3.12±0.72,and 3.51±0.60,respectively.The visibility scores for the detection and surface on TXI were significantly lower than that on CE but higher than that on WLI(P<0.001).The visibility scores for the margin and surface on TXI+CE were significantly higher than those on CE(P<0.001).In the sub-analysis of adenomas,the visibility for the margin and surface on TXI+CE was significantly better than that on WLI,TXI,and CE(P<0.001).In the sub-analysis of serrated polyps,the visibility for the margin and surface on TXI+CE was also significantly better than that on WLI,TXI,and CE(P<0.001).CONCLUSION TXI+CE enhanced the visibility of the margin and surface compared to WLI,TXI,and CE for colorectal lesions. 展开更多
关键词 Texture and color enhancement imaging Indigo carmine ADENOMA COLONOSCOPY Sessile serrated lesion
下载PDF
Pixel’s Quantum Image Enhancement Using Quantum Calculus
11
作者 Husam Yahya Dumitru Baleanu +1 位作者 Rabha W.Ibrahim Nadia M.G.Al-Saidi 《Computers, Materials & Continua》 SCIE EI 2023年第2期2531-2539,共9页
The current study provides a quantum calculus-based medical image enhancement technique that dynamically chooses the spatial distribution of image pixel intensity values.The technique focuses on boosting the edges and... The current study provides a quantum calculus-based medical image enhancement technique that dynamically chooses the spatial distribution of image pixel intensity values.The technique focuses on boosting the edges and texture of an image while leaving the smooth areas alone.The brain Magnetic Resonance Imaging(MRI)scans are used to visualize the tumors that have spread throughout the brain in order to gain a better understanding of the stage of brain cancer.Accurately detecting brain cancer is a complex challenge that the medical system faces when diagnosing the disease.To solve this issue,this research offers a quantum calculus-based MRI image enhancement as a pre-processing step for brain cancer diagnosis.The proposed image enhancement approach improves images with low gray level changes by estimating the pixel’s quantum probability.The suggested image enhancement technique is demonstrated to be robust and resistant to major quality changes on a variety ofMRIscan datasets of variable quality.ForMRI scans,the BRISQUE“blind/referenceless image spatial quality evaluator”and the NIQE“natural image quality evaluator”measures were 39.38 and 3.58,respectively.The proposed image enhancement model,according to the data,produces the best image quality ratings,and it may be able to aid medical experts in the diagnosis process.The experimental results were achieved using a publicly available collection of MRI scans. 展开更多
关键词 Quantum calculus MRI brain cancer image enhancement image processing BRISQUE NIQE
下载PDF
A Text Image Watermarking Algorithm Based on Image Enhancement
12
作者 Baowei Wang Luyao Shen +2 位作者 Junhao Zhang Zenghui Xu Neng Wang 《Computers, Materials & Continua》 SCIE EI 2023年第10期1183-1207,共25页
Digital watermarking technology is adequate for copyright protection and content authentication.There needs to be more research on the watermarking algorithm after printing and scanning.Aiming at the problem that exis... Digital watermarking technology is adequate for copyright protection and content authentication.There needs to be more research on the watermarking algorithm after printing and scanning.Aiming at the problem that existing anti-print scanning text image watermarking algorithms cannot take into account the invisibility and robustness of the watermark,an anti-print scanning watermarking algorithm suitable for text images is proposed.This algorithm first performs a series of image enhancement preprocessing operations on the printed scanned image to eliminate the interference of incorrect bit information on watermark embedding and then uses a combination of Discrete Wavelet Transform(DWT)-Singular Value Decomposition(SVD)to embed the watermark.Experiments show that the average Normalized Correlation(NC)of the watermark extracted by this algorithm against attacks such as Joint Photographic Experts Group(JPEG)compression,JPEG2000 compression,and print scanning is above 0.93.Especially,the average NC of the watermark extracted after print scanning attacks is greater than 0.964,and the average Bit Error Ratio(BER)is 5.15%.This indicates that this algorithm has strong resistance to various attacks and print scanning attacks and can better take into account the invisibility of the watermark. 展开更多
关键词 Print-resistant scanning image enhancement DWT SVD embedding intensity
下载PDF
RF-Net: Unsupervised Low-Light Image Enhancement Based on Retinex and Exposure Fusion
13
作者 Tian Ma Chenhui Fu +2 位作者 Jiayi Yang Jiehui Zhang Chuyang Shang 《Computers, Materials & Continua》 SCIE EI 2023年第10期1103-1122,共20页
Low-light image enhancement methods have limitations in addressing issues such as color distortion,lack of vibrancy,and uneven light distribution and often require paired training data.To address these issues,we propo... Low-light image enhancement methods have limitations in addressing issues such as color distortion,lack of vibrancy,and uneven light distribution and often require paired training data.To address these issues,we propose a two-stage unsupervised low-light image enhancement algorithm called Retinex and Exposure Fusion Network(RFNet),which can overcome the problems of over-enhancement of the high dynamic range and under-enhancement of the low dynamic range in existing enhancement algorithms.This algorithm can better manage the challenges brought about by complex environments in real-world scenarios by training with unpaired low-light images and regular-light images.In the first stage,we design a multi-scale feature extraction module based on Retinex theory,capable of extracting details and structural information at different scales to generate high-quality illumination and reflection images.In the second stage,an exposure image generator is designed through the camera response mechanism function to acquire exposure images containing more dark features,and the generated images are fused with the original input images to complete the low-light image enhancement.Experiments show the effectiveness and rationality of each module designed in this paper.And the method reconstructs the details of contrast and color distribution,outperforms the current state-of-the-art methods in both qualitative and quantitative metrics,and shows excellent performance in the real world. 展开更多
关键词 Low-light image enhancement multiscale feature extraction module exposure generator exposure fusion
下载PDF
Underwater Image Enhancement Based on IMSRCR and CLAHE-WGIF
14
作者 LI Ting ZHOU Xianchun +1 位作者 ZHANG Ying SHI Zhengting 《Instrumentation》 2023年第2期19-29,共11页
Aiming at the scattering and absorption of light in the water body,which causes the problems of color shift,uneven brightness,poor sharpness and missing details in the acquired underwater images,an underwater image en... Aiming at the scattering and absorption of light in the water body,which causes the problems of color shift,uneven brightness,poor sharpness and missing details in the acquired underwater images,an underwater image enhancement algorithm based on IMSRCR and CLAHE-WGIF is proposed.Firstly,the IMSRCR algorithm proposed in this paper is used to process the original underwater image with adaptive color shift correction;secondly,the image is converted to HSV color space,and the segmentation exponential algorithm is used to process the S component to enhance the image saturation;finally,multi-scale Retinex is used to decompose the V component image into detail layer and base layer,and adaptive two-dimensional gamma correction is made to the base layer to adjust the brightness unevenness,while the detail layer is processed by CLAHE-WGIF algorithm to enhance the image contrast and detail information.The experimental results show that our algorithm has some advantages over existing algorithms in both subjective and objective evaluations,and the information entropy of the image is improved by 6.3%on average,and the UIQM and UCIQE indexes are improved by 12.9%and 20.3%on average. 展开更多
关键词 Underwater Image enhancement HSV Color Space MSRCR CLAHE WGIF
下载PDF
Hyperspectral image super resolution using deep internal and self-supervised learning
15
作者 Zhe Liu Xian-Hua Han 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期128-141,共14页
By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral... By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral(HR-HS)image.With previously collected large-amount of external data,these methods are intuitively realised under the full supervision of the ground-truth data.Thus,the database construction in merging the low-resolution(LR)HS(LR-HS)and HR multispectral(MS)or RGB image research paradigm,commonly named as HSI SR,requires collecting corresponding training triplets:HR-MS(RGB),LR-HS and HR-HS image simultaneously,and often faces dif-ficulties in reality.The learned models with the training datasets collected simultaneously under controlled conditions may significantly degrade the HSI super-resolved perfor-mance to the real images captured under diverse environments.To handle the above-mentioned limitations,the authors propose to leverage the deep internal and self-supervised learning to solve the HSI SR problem.The authors advocate that it is possible to train a specific CNN model at test time,called as deep internal learning(DIL),by on-line preparing the training triplet samples from the observed LR-HS/HR-MS(or RGB)images and the down-sampled LR-HS version.However,the number of the training triplets extracted solely from the transformed data of the observation itself is extremely few particularly for the HSI SR tasks with large spatial upscale factors,which would result in limited reconstruction performance.To solve this problem,the authors further exploit deep self-supervised learning(DSL)by considering the observations as the unlabelled training samples.Specifically,the degradation modules inside the network were elaborated to realise the spatial and spectral down-sampling procedures for transforming the generated HR-HS estimation to the high-resolution RGB/LR-HS approximation,and then the reconstruction errors of the observations were formulated for measuring the network modelling performance.By consolidating the DIL and DSL into a unified deep framework,the authors construct a more robust HSI SR method without any prior training and have great potential of flexible adaptation to different settings per obser-vation.To verify the effectiveness of the proposed approach,extensive experiments have been conducted on two benchmark HS datasets,including the CAVE and Harvard datasets,and demonstrate the great performance gain of the proposed method over the state-of-the-art methods. 展开更多
关键词 computer vision deep learning deep neural networks HYPERSPECTRAL image enhancement
下载PDF
Pre-operative enhanced magnetic resonance imaging combined with clinical features predict early recurrence of hepatocellular carcinoma after radical resection
16
作者 Jian-Ping Chen Ri-Hui Yang +3 位作者 Tian-Hui Zhang Li-An Liao Yu-Ting Guan Hai-Yang Dai 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1192-1203,共12页
BACKGROUND Indentifying predictive factors for postoperative recurrence of hepatocellular carcinoma(HCC)has great significance for patient prognosis.AIM To explore the value of gadolinium ethoxybenzyl diethylenetriami... BACKGROUND Indentifying predictive factors for postoperative recurrence of hepatocellular carcinoma(HCC)has great significance for patient prognosis.AIM To explore the value of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid(Gd-EOB-DTPA)enhanced magnetic resonance imaging(MRI)combined with clinical features in predicting early recurrence of HCC after resection.METHODS A total of 161 patients with pathologically confirmed HCC were enrolled.The patients were divided into early recurrence and non-early recurrence group based on the follow-up results.The clinical,laboratory,pathological results and Gd-EOB-DTPA enhanced MRI imaging features were analyzed.RESULTS Of 161 patients,73 had early recurrence and 88 were had non-early recurrence.Univariate analysis showed that patient age,gender,serum alpha-fetoprotein level,the Barcelona Clinic Liver Cancer stage,China liver cancer(CNLC)stage,microvascular invasion(MVI),pathological satellite focus,tumor size,tumor number,tumor boundary,tumor capsule,intratumoral necrosis,portal vein tumor thrombus,large vessel invasion,nonperipheral washout,peritumoral enhancement,hepatobiliary phase(HBP)/tumor signal intensity(SI)/peritumoral SI,HBP peritumoral low signal and peritumoral delay enhancement were significantly associated with early recurrence of HCC after operation.Multivariate logistic regression analysis showed that patient age,MVI,CNLC stage,tumor boundary and large vessel invasion were independent predictive factors.External data validation indicated that the area under the curve of the combined predictors was 0.861,suggesting that multivariate logistic regression was a reasonable predictive model for early recurrence of HCC.CONCLUSION Gd-EOB-DTPA enhanced MRI combined with clinical features would help predicting the early recurrence of HCC after operation. 展开更多
关键词 Hepatocellular carcinoma Enhanced magnetic resonance imaging Microvascular invasion Hepatobiliary phase RECURRENCE
下载PDF
Precision in detecting colon lesions:A key to effective screening policy but will it improve overall outcomes?
17
作者 Luis Ramon Rabago Maria Delgado Galan 《World Journal of Gastrointestinal Endoscopy》 2024年第3期102-107,共6页
Colonoscopy is the gold standard for the screening and diagnosis of colorectal cancer,resulting in a decrease in the incidence and mortality of colon cancer.However,it has a 21%rate of missed polyps.Several strategies... Colonoscopy is the gold standard for the screening and diagnosis of colorectal cancer,resulting in a decrease in the incidence and mortality of colon cancer.However,it has a 21%rate of missed polyps.Several strategies have been devised to increase polyp detection rates and improve their characterization and delimi-tation.These include chromoendoscopy(CE),the use of other devices such as Endo cuffs,and major advances in endoscopic equipment[high definition,magnification,narrow band imaging,i-scan,flexible spectral imaging color enhancement,texture and color enhancement imaging(TXI),etc.].In the retrospective study by Hiramatsu et al,they compared white-light imaging with CE,TXI,and CE+TXI to determine which of these strategies allows for better definition and delimitation of polyps.They concluded that employing CE associated with TXI stands out as the most effective method to utilize.It remains to be demonstrated whether these results are extrapolatable to other types of virtual CE.Additionally,further investigation is needed in order to ascertain whether this strategy could lead to a reduction in the recurrence of excised lesions and potentially lower the occurrence of interval cancer. 展开更多
关键词 Colonoscopy screening Interval colorectal cancer Post colonoscopy colorectal cancer CHROMOENDOSCOPY Virtual chromoendoscopy high-definition whitelight endoscopy Texture and color enhancement imaging Indigo carmine ADENOMA Sessile serrated lesion
下载PDF
Research and Implementation of Algorithm for Image Enhancement and Unwrapped Distortion Correction for SLVF Panoramic Night Vision Image 被引量:3
18
作者 张振海 李科杰 +1 位作者 高峻峣 段星光 《Journal of Beijing Institute of Technology》 EI CAS 2008年第4期423-428,共6页
Abstract: Based on digital signal processor(DSP) and field programmable gate array(FPGA) techniques, the architecture of super large view field(SLVF) panoramic night vision image processing hardware platform wa... Abstract: Based on digital signal processor(DSP) and field programmable gate array(FPGA) techniques, the architecture of super large view field(SLVF) panoramic night vision image processing hardware platform was established. The panoramic unwrapping and correcting algorithm, up to a full 360°, based on coordinate rotation digital computer (CORDIC) and night vision image enhancement algorithm, based on histogram equalization theory and edge detection theory, was presented in this paper, with the purpose of processing night vision dynamic panoramic annular image. The annular image can be unwrapped and corrected to conventional rectangular panorama by the panoramic image processing algorithm, which uses the pipelined CORDIC configuration to realize a trigonometric function generator with high speed and high precision. Histogram equalization algorithm can perfectly enhance the contrast of the night vision image. Edge detection algorithm can be propitious to find and detect small dim dynamic targets in night vision circumstances. After abundant experiment, the al- gorithm for panoramic image processing and night vision image enhancement is successfully implemented in FPGA and DSP. The panoramic night vision image system is a compact device, with no external rotating parts. And the system can reliably and dynamically detect 360* SLVF panoramic night vision image. 展开更多
关键词 panoramic annular image CORDIC image enhancement unwrapped algorithm FPGA and DSP
下载PDF
Adaptive image enhancement algorithm based on fuzzy entropy and human visual characteristics 被引量:3
19
作者 WANG Baoping MA Jianjun +3 位作者 HAN Zhaoxuan ZHANG Yan FANG Yang GE Yimeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期1079-1088,共10页
To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement al... To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement algorithm. This algorithm introduces fuzzy entropy, makes full use of neighborhood information, fuzzy information and human visual characteristics.To enhance an image, this paper first carries out the reasonable fuzzy-3 partition of its histogram into the dark region, intermediate region and bright region. It then extracts the statistical characteristics of the three regions and adaptively selects the parameter αaccording to the statistical characteristics of the image’s gray-scale values. It also adds a useful nonlinear transform, thus increasing the ubiquity of the algorithm. Finally, the causes for the gray-scale value overcorrection that occurs in the traditional image enhancement algorithms are analyzed and their solutions are proposed.The simulation results show that our image enhancement algorithm can effectively suppress the noise of an image, enhance its contrast and visual effect, sharpen its edge and adjust its dynamic range. 展开更多
关键词 image enhancement fuzzy entropy fuzzy partition logarithmic image processing(LIP) model human visual characteristic statistical characteristic
下载PDF
Interactive Image Enhancement by Fuzzy Relaxation 被引量:3
20
作者 Shang-Ming Zhou John Q.Can +1 位作者 Li-Da Xu Robert John 《International Journal of Automation and computing》 EI 2007年第3期229-235,共7页
In this paper, an interactive image enhancement (HE) technique based on fuzzy relaxation is presented, which allows the user to select different intensity levels for enhancement and intermit the enhancement process ... In this paper, an interactive image enhancement (HE) technique based on fuzzy relaxation is presented, which allows the user to select different intensity levels for enhancement and intermit the enhancement process according to his/her preference in applications. First, based on an analysis of the convergence of a fuzzy relaxation algorithm for image contrast enhancement, an improved version of this algorithm, which is called FuzzIIE Method 1, is suggested by deriving a relationship between the convergence regions and the parameters in the transformations defined in the algorithm. Then a method called FuzzIIE Method 2 is introduced by using a different fuzzy relaxation function, in which there is no need to re-select the parameter values for interactive image enhancement. Experimental results are presented demonstrating the enhancement capabilities of the proposed methods under different conditions. 展开更多
关键词 Interactive image enhancement fuzzy relaxation fuzzy set crossover point convergence.
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部