期刊文献+
共找到904篇文章
< 1 2 46 >
每页显示 20 50 100
Single-Phase Velocity Determination Based in Video and Sub-Images Processing:An Optical Flow Method Implemented with Support of a Programmed MatLab Structured Script 被引量:1
1
作者 Andreas Nascimento Edson Da Costa Bortoni +2 位作者 José Luiz Goncalves Pedro Antunes Duarte Mauro Hugo Mathias 《Journal of Software Engineering and Applications》 2015年第6期290-294,共5页
Important in many different sectors of the industry, the determination of stream velocity has become more and more important due to measurements precision necessity, in order to determine the right production rates, d... Important in many different sectors of the industry, the determination of stream velocity has become more and more important due to measurements precision necessity, in order to determine the right production rates, determine the volumetric production of undesired fluid, establish automated controls based on these measurements avoiding over-flooding or over-production, guaranteeing accurate predictive maintenance, etc. Difficulties being faced have been the determination of the velocity of specific fluids embedded in some others, for example, determining the gas bubbles stream velocity flowing throughout liquid fluid phase. Although different and already applicable methods have been researched and already implemented within the industry, a non-intrusive automated way of providing those stream velocities has its importance, and may have a huge impact in projects budget. Knowing the importance of its determination, this developed script uses a methodology of breaking-down real-time videos media into frame images, analyzing by pixel correlations possible superposition matches for further gas bubbles stream velocity estimation. In raw sense, the script bases itself in functions and procedures already available in MatLab, which can be used for image processing and treatments, allowing the methodology to be implemented. Its accuracy after the running test was of around 97% (ninety-seven percent);the raw source code with comments had almost 3000 (three thousand) characters;and the hardware placed for running the code was an Intel Core Duo 2.13 [Ghz] and 2 [Gb] RAM memory capable workstation. Even showing good results, it could be stated that just the end point correlations were actually getting to the final solution. So that, making use of self-learning functions or neural network, one could surely enhance the capability of the application to be run in real-time without getting exhaust by iterative loops. 展开更多
关键词 Optical Flow Single-Phase Velocity Video and Image processing Sensing MatLab Script
下载PDF
Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing
2
作者 Hui Li Rong-Wang Li +1 位作者 Peng Shu Yu-Qiang Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期287-295,共9页
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri... Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results. 展开更多
关键词 techniques:image processing methods:data analysis light pollution
下载PDF
Automatic area estimation of algal blooms in water bodies from UAV images using texture analysis
3
作者 Ajmeria Rahul Gundu Lokesh +2 位作者 Siddhartha Goswami R.N.Ponnalagu Radhika Sudha 《Water Science and Engineering》 EI CAS CSCD 2024年第1期62-71,共10页
Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solu... Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring. 展开更多
关键词 Algal bloom Image processing Texture analysis Histogram analysis Unmanned aerial vehicles
下载PDF
Detection of Oscillations in Process Control Loops From Visual Image Space Using Deep Convolutional Networks
4
作者 Tao Wang Qiming Chen +3 位作者 Xun Lang Lei Xie Peng Li Hongye Su 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期982-995,共14页
Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have b... Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers. 展开更多
关键词 Convolutional neural networks(CNNs) deep learning image processing oscillation detection process industries
下载PDF
An Implementation of Multiscale Line Detection and Mathematical Morphology for Efficient and Precise Blood Vessel Segmentation in Fundus Images
5
作者 Syed Ayaz Ali Shah Aamir Shahzad +4 位作者 Musaed Alhussein Chuan Meng Goh Khursheed Aurangzeb Tong Boon Tang Muhammad Awais 《Computers, Materials & Continua》 SCIE EI 2024年第5期2565-2583,共19页
Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when deal... Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when dealing with color fundus images due to issues like non-uniformillumination,low contrast,and variations in vessel appearance,especially in the presence of different pathologies.Furthermore,the speed of the retinal vessel segmentation system is of utmost importance.With the surge of now available big data,the speed of the algorithm becomes increasingly important,carrying almost equivalent weightage to the accuracy of the algorithm.To address these challenges,we present a novel approach for retinal vessel segmentation,leveraging efficient and robust techniques based on multiscale line detection and mathematical morphology.Our algorithm’s performance is evaluated on two publicly available datasets,namely the Digital Retinal Images for Vessel Extraction dataset(DRIVE)and the Structure Analysis of Retina(STARE)dataset.The experimental results demonstrate the effectiveness of our method,withmean accuracy values of 0.9467 forDRIVE and 0.9535 for STARE datasets,aswell as sensitivity values of 0.6952 forDRIVE and 0.6809 for STARE datasets.Notably,our algorithmexhibits competitive performance with state-of-the-art methods.Importantly,it operates at an average speed of 3.73 s per image for DRIVE and 3.75 s for STARE datasets.It is worth noting that these results were achieved using Matlab scripts containing multiple loops.This suggests that the processing time can be further reduced by replacing loops with vectorization.Thus the proposed algorithm can be deployed in real time applications.In summary,our proposed system strikes a fine balance between swift computation and accuracy that is on par with the best available methods in the field. 展开更多
关键词 Line detector vessel detection LOCALIZATION mathematical morphology image processing
下载PDF
Simulation of Fracture Process of Lightweight Aggregate Concrete Based on Digital Image Processing Technology
6
作者 Safwan Al-sayed Xi Wang Yijiang Peng 《Computers, Materials & Continua》 SCIE EI 2024年第6期4169-4195,共27页
The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a... The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis. 展开更多
关键词 Digital image processing lightweight aggregate concrete mesoscopic model numerical simulation fracture analysis bending beams
下载PDF
An anti-aliasing filtering of quantum images in spatial domain using a pyramid structure
7
作者 吴凯 周日贵 罗佳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期223-237,共15页
As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most q... As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness. 展开更多
关键词 quantum color image processing anti-aliasing filtering algorithm quantum multiplier pyramid model
下载PDF
How to Coadd Images.Ⅱ.Anti-aliasing and PSF Deconvolution
8
作者 Lei Wang Huanyuan Shan +8 位作者 Lin Nie Dezi Liu Zhaojun Yan Guoliang Li Cheng Cheng Yushan Xie Han Qu Wenwen Zheng Xi Kang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期103-113,共11页
We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively reweighted least squares and divide-and-conquer algorithms.Our approach not only allows for the anti-aliasing ... We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively reweighted least squares and divide-and-conquer algorithms.Our approach not only allows for the anti-aliasing of the images but also enables Point-Spread Function(PSF)deconvolution,resulting in enhanced restoration of extended sources,the highest peak signal-to-noise ratio,and reduced ringing artefacts.To test our method,we conducted numerical simulations that replicated observation runs of the China Space Station Telescope/the VLT Survey Telescope(VST)and compared our results to those obtained using previous algorithms.The simulation showed that our method outperforms previous approaches in several ways,such as restoring the profile of extended sources and minimizing ringing artefacts.Additionally,because our method relies on the inherent advantages of least squares fitting,it is more versatile and does not depend on the local uniformity hypothesis for the PSF.However,the new method consumes much more computation than the other approaches. 展开更多
关键词 methods:analytical techniques:image processing gravitational lensing:weak (ISM:)cosmic rays
下载PDF
Parallel Technologies with Image Processing Using Inverse Filter
9
作者 Rahaf Alsharhan Areej Muheef +2 位作者 Yasmin Al Ibrahim Afnan Rayyani Yasir Alguwaifli 《Journal of Computer and Communications》 2024年第1期110-119,共10页
Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights t... Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights the importance of addressing race conditions in parallel image processing, specifically focusing on color inverse filtering using OpenMP. We considered three solutions to solve race conditions, each with distinct characteristics: #pragma omp atomic: Protects individual memory operations for fine-grained control. #pragma omp critical: Protects entire code blocks for exclusive access. #pragma omp parallel sections reduction: Employs a reduction clause for safe aggregation of values across threads. Our findings show that the produced images were unaffected by race condition. However, it becomes evident that solving the race conditions in the code makes it significantly faster, especially when it is executed on multiple cores. 展开更多
关键词 PARALLEL PARALLELIZATION Image processing Inverse Filtering OPENMP Race Conditions
下载PDF
Parallel Image Processing: Taking Grayscale Conversion Using OpenMP as an Example
10
作者 Bayan AlHumaidan Shahad Alghofaily +2 位作者 Maitha Al Qhahtani Sara Oudah Naya Nagy 《Journal of Computer and Communications》 2024年第2期1-10,共10页
In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularl... In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks. 展开更多
关键词 Parallel Computing Image processing OPENMP Parallel Programming High Performance Computing GPU (Graphic processing Unit)
下载PDF
Fetal MRI Artifacts: Semi-Supervised Generative Adversarial Neural Network for Motion Artifacts Reducing in Fetal Magnetic Resonance Images
11
作者 Ítalo Messias Félix Santos Gilson Antonio Giraldi +1 位作者 Heron Werner Junior Bruno Richard Schulze 《Journal of Computer and Communications》 2024年第6期210-225,共16页
This study addresses challenges in fetal magnetic resonance imaging (MRI) related to motion artifacts, maternal respiration, and hardware limitations. To enhance MRI quality, we employ deep learning techniques, specif... This study addresses challenges in fetal magnetic resonance imaging (MRI) related to motion artifacts, maternal respiration, and hardware limitations. To enhance MRI quality, we employ deep learning techniques, specifically utilizing Cycle GAN. Synthetic pairs of images, simulating artifacts in fetal MRI, are generated to train the model. Our primary contribution is the use of Cycle GAN for fetal MRI restoration, augmented by artificially corrupted data. We compare three approaches (supervised Cycle GAN, Pix2Pix, and Mobile Unet) for artifact removal. Experimental results demonstrate that the proposed supervised Cycle GAN effectively removes artifacts while preserving image details, as validated through Structural Similarity Index Measure (SSIM) and normalized Mean Absolute Error (MAE). The method proves comparable to alternatives but avoids the generation of spurious regions, which is crucial for medical accuracy. 展开更多
关键词 Fetal MRI Artifacts Removal Deep Learning Image processing Generative Adversarial Networks
下载PDF
Automated Extraction and Analysis of CBC Test from Scanned Images
12
作者 Iman S. Alansari 《Journal of Software Engineering and Applications》 2024年第2期129-141,共13页
Health care is an important part of human life and is a right for everyone. One of the most basic human rights is to receive health care whenever they need it. However, this is simply not an option for everyone due to... Health care is an important part of human life and is a right for everyone. One of the most basic human rights is to receive health care whenever they need it. However, this is simply not an option for everyone due to the social conditions in which some communities live and not everyone has access to it. This paper aims to serve as a reference point and guide for users who are interested in monitoring their health, particularly their blood analysis to be aware of their health condition in an easy way. This study introduces an algorithmic approach for extracting and analyzing Complete Blood Count (CBC) parameters from scanned images. The algorithm employs Optical Character Recognition (OCR) technology to process images containing tabular data, specifically targeting CBC parameter tables. Upon image processing, the algorithm extracts data and identifies CBC parameters and their corresponding values. It evaluates the status (High, Low, or Normal) of each parameter and subsequently presents evaluations, and any potential diagnoses. The primary objective is to automate the extraction and evaluation of CBC parameters, aiding healthcare professionals in swiftly assessing blood analysis results. The algorithmic framework aims to streamline the interpretation of CBC tests, potentially improving efficiency and accuracy in clinical diagnostics. 展开更多
关键词 Image processing Optical Character Recognition Tesseract OCR Health Care Application
下载PDF
An Algorithm for Ship Wake Detection from the SAR Images Using the Radon Transform and Morphological Image Processing 被引量:2
13
作者 金亚秋 王世庆 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第4期7-12,共6页
Using the Radon transform and morphological image processing, an algorithm for ship's wake detection in the SAR (synthetic aperture radar) image is developed. Being manipulated in the Radon space to invert the gra... Using the Radon transform and morphological image processing, an algorithm for ship's wake detection in the SAR (synthetic aperture radar) image is developed. Being manipulated in the Radon space to invert the gray-level and binary images, the linear texture of ship wake in oceanic clutter can be well detected. It has been applied to the automatic detection of a moving ship from the SEASAT SAR image. The results show that this algorithm is well robust in a strong noisy background and is not very sensitive to the threshold parameter and the working window size. 展开更多
关键词 ALGORITHMS Image processing Mathematical transformations Radar clutter Radar target recognition Spurious signal noise Synthetic aperture radar
下载PDF
Correlations between mineral composition and mechanical properties of granite using digital image processing and discrete element method 被引量:2
14
作者 Changdi He Brijes Mishra +3 位作者 Qingwen Shi Yun Zhao Dajun Lin Xiao Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期949-962,共14页
This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(... This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests. 展开更多
关键词 GRANITE Digital image processing Discrete element method Mineral composition Mechanical properties
下载PDF
Damage detection with image processing: a comparative study 被引量:2
15
作者 Marianna Crognale Melissa De Iuliis +1 位作者 Cecilia Rinaldi Vincenzo Gattulli 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第2期333-345,共13页
Large structures,such as bridges,highways,etc.,need to be inspected to evaluate their actual physical and functional condition,to predict future conditions,and to help decision makers allocating maintenance and rehabi... Large structures,such as bridges,highways,etc.,need to be inspected to evaluate their actual physical and functional condition,to predict future conditions,and to help decision makers allocating maintenance and rehabilitation resources.The assessment of civil infrastructure condition is carried out through information obtained by inspection and/or monitoring operations.Traditional techniques in structural health monitoring(SHM)involve visual inspection related to inspection standards that can be time-consuming data collection,expensive,labor intensive,and dangerous.To address these limitations,machine vision-based inspection procedures have increasingly been investigated within the research community.In this context,this paper proposes and compares four different computer vision procedures to identify damage by image processing:Otsu method thresholding,Markov random fields segmentation,RGB color detection technique,and K-means clustering algorithm.The first method is based on segmentation by thresholding that returns a binary image from a grayscale image.The Markov random fields technique uses a probabilistic approach to assign labels to model the spatial dependencies in image pixels.The RGB technique uses color detection to evaluate the defect extensions.Finally,K-means algorithm is based on Euclidean distance for clustering of the images.The benefits and limitations of each technique are discussed,and the challenges of using the techniques are highlighted.To show the effectiveness of the described techniques in damage detection of civil infrastructures,a case study is presented.Results show that various types of corrosion and cracks can be detected by image processing techniques making the proposed techniques a suitable tool for the prediction of the damage evolution in civil infrastructures. 展开更多
关键词 damage detection image processing image classification civil infrastructure inspection structural health monitoring analysis
下载PDF
Analysis of morphological characteristics of gravels based on digital image processing technology and self-organizing map 被引量:1
16
作者 XU Tao YU Huan +4 位作者 QIU Xia KONG Bo XIANG Qing XU Xiaoyu FU Hao 《Journal of Arid Land》 SCIE CSCD 2023年第3期310-326,共17页
A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-effi... A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-efficiency and have many errors.This study researched the spatial distribution and cluster characteristics of gravels based on digital image processing technology combined with a self-organizing map(SOM)and multivariate statistical methods in the grassland of northern Tibetan Plateau.Moreover,the correlation of morphological parameters of gravels between different cluster groups and the environmental factors affecting gravel distribution were analyzed.The results showed that the morphological characteristics of gravels in northern region(cluster C)and southern region(cluster B)of the Tibetan Plateau were similar,with a low gravel coverage,small gravel diameter,and elongated shape.These regions were mainly distributed in high mountainous areas with large topographic relief.The central region(cluster A)has high coverage of gravels with a larger diameter,mainly distributed in high-altitude plains with smaller undulation.Principal component analysis(PCA)results showed that the gravel distribution of cluster A may be mainly affected by vegetation,while those in clusters B and C could be mainly affected by topography,climate,and soil.The study confirmed that the combination of digital image processing technology and SOM could effectively analyzed the spatial distribution characteristics of gravels,providing a new mode for gravel research. 展开更多
关键词 self-organizing map digital image processing morphological characteristics multivariate statistical method environmental monitoring
下载PDF
Detection of Copy-Move Forgery in Digital Images Using Singular Value Decomposition 被引量:1
17
作者 Zaid Nidhal Khudhair Farhan Mohamed +2 位作者 Amjad Rehman Tanzila Saba Saeed Ali bahaj 《Computers, Materials & Continua》 SCIE EI 2023年第2期4135-4147,共13页
This paper presents an improved approach for detecting copy-move forgery based on singular value decomposition(SVD).It is a block-based method where the image is scanned from left to right and top to down by a sliding... This paper presents an improved approach for detecting copy-move forgery based on singular value decomposition(SVD).It is a block-based method where the image is scanned from left to right and top to down by a sliding window with a determined size.At each step,the SVD is determined.First,the diagonal matrix’s maximum value(norm)is selected(representing the scaling factor for SVD and a fixed value for each set of matrix elements even when rotating thematrix or scaled).Then,the similar norms are grouped,and each leading group is separated into many subgroups(elements of each subgroup are neighbors)according to 8-adjacency(the subgroups for each leading group must be far from others by a specific distance).After that,a weight is assigned for each subgroup to classify the image as forgery or not.Finally,the F1 score of the proposed system is measured,reaching 99.1%.This approach is robust against rotation,scaling,noisy images,and illumination variation.It is compared with other similarmethods and presents very promised results. 展开更多
关键词 Forgery image forensic image processing region duplication SVD transformation technological development
下载PDF
Applying Digital Image Processing to Evaluate a Extraction Method of Cartographic Features in Digital Images
18
作者 Erivaldo Antonio da Silva Guilherme Pina Cardim 《Journal of Earth Science and Engineering》 2012年第4期241-246,共6页
A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perfo... A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perform the features extraction. Despite of all studies about this, some features cannot be found by the algorithm or it can extract some pixels unduly. So the current article aims to show the results with the software development that uses the original and reference image to calculate some statistics about the extraction process. Furthermore, the calculated statistics can be used to evaluate the extraction process. 展开更多
关键词 Remote sensing cartographic features extraction evaluate process digital image processing.
下载PDF
Calculation of Percentage of Coarse Aggregate Present in Concrete Using Processing of Digital Images Obtained with a Commercial Scanner
19
作者 Jose Renato de Castro Pessoa Joel Sanchez Dominguez +3 位作者 Rodrigo Erthal Wilson Vanussa da Silva Charles Gil de Carvalho Joaquim Teixeira de Assis 《Journal of Chemistry and Chemical Engineering》 2015年第2期136-139,共4页
This paper presents a method for determining the percentage of coarse aggregate in concrete specimens by image processing. The test pieces were produced with the aim of obtaining images of their cross sections through... This paper presents a method for determining the percentage of coarse aggregate in concrete specimens by image processing. The test pieces were produced with the aim of obtaining images of their cross sections through a scanner table. In order to increase the contrast between mortar and coarse aggregate the sliced surfaces were treated with the phenolphthale in solution. The images obtained in the scanner were processed in a program developed with MATLAB (matrix laboratory). The average coarse aggregate in each section and the mean of coarse aggregate per test body were calculated. With the results, it was revealed that the method returned satisfying results when compared to the original trace of the concrete. 展开更多
关键词 CONCRETE image processing characterization of concrete.
下载PDF
Adaptive Boundary and Semantic Composite Segmentation Method for Individual Objects in Aerial Images
20
作者 Ying Li Guanghong Gong +1 位作者 Dan Wang Ni Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2237-2265,共29页
There are two types of methods for image segmentation.One is traditional image processing methods,which are sensitive to details and boundaries,yet fail to recognize semantic information.The other is deep learning met... There are two types of methods for image segmentation.One is traditional image processing methods,which are sensitive to details and boundaries,yet fail to recognize semantic information.The other is deep learning methods,which can locate and identify different objects,but boundary identifications are not accurate enough.Both of them cannot generate entire segmentation information.In order to obtain accurate edge detection and semantic information,an Adaptive Boundary and Semantic Composite Segmentation method(ABSCS)is proposed.This method can precisely semantic segment individual objects in large-size aerial images with limited GPU performances.It includes adaptively dividing and modifying the aerial images with the proposed principles and methods,using the deep learning method to semantic segment and preprocess the small divided pieces,using three traditional methods to segment and preprocess original-size aerial images,adaptively selecting traditional results tomodify the boundaries of individual objects in deep learning results,and combining the results of different objects.Individual object semantic segmentation experiments are conducted by using the AeroScapes dataset,and their results are analyzed qualitatively and quantitatively.The experimental results demonstrate that the proposed method can achieve more promising object boundaries than the original deep learning method.This work also demonstrates the advantages of the proposed method in applications of point cloud semantic segmentation and image inpainting. 展开更多
关键词 Semantic segmentation aerial images composite method traditional image processing deep learning
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部