In this paper, the basic principles and mathematical process of the Second-order Imaginary Plane Method (IPM) for modeling the radiative heat transfer are analysed and proved in detail. Through the numerical computati...In this paper, the basic principles and mathematical process of the Second-order Imaginary Plane Method (IPM) for modeling the radiative heat transfer are analysed and proved in detail. Through the numerical computation for the real process of the radiative heat transfer using the Second-order IPM,the previous IPM (the first-order), the Analytic Method and the Zone Method, it was shown that the calculation accuracy of the Secondr-order IPM is much higher than that of the first-order IPM, and its demand to computer capacity and time consuming is much lower than that of the Zone Method or the Analytic Method. It is verilied that the method is more effective and has a higher accuracy for modeling radiative heat transfer in engineering.展开更多
An imaginary plane method for calculation of radiative heat trensfer and its application in the freeboard of AFBC boiler is presented in this paper. The combustion reaction and particle concentration are taken into ac...An imaginary plane method for calculation of radiative heat trensfer and its application in the freeboard of AFBC boiler is presented in this paper. The combustion reaction and particle concentration are taken into account in this method. With is method, one-dimensional freeboard model for radiative heat transfer has been made. Results from this model have been compared with the experimental results of a 130 t/h AFBC boiler. The distribution of flue gas temperature and heat flux at the waterwell are obtained. It is shown that this model has the advantage of good accuracy and requiring less computation time. The applicability of the predicted results in the AFBC boiler design and operation was also discussed.展开更多
文摘In this paper, the basic principles and mathematical process of the Second-order Imaginary Plane Method (IPM) for modeling the radiative heat transfer are analysed and proved in detail. Through the numerical computation for the real process of the radiative heat transfer using the Second-order IPM,the previous IPM (the first-order), the Analytic Method and the Zone Method, it was shown that the calculation accuracy of the Secondr-order IPM is much higher than that of the first-order IPM, and its demand to computer capacity and time consuming is much lower than that of the Zone Method or the Analytic Method. It is verilied that the method is more effective and has a higher accuracy for modeling radiative heat transfer in engineering.
文摘An imaginary plane method for calculation of radiative heat trensfer and its application in the freeboard of AFBC boiler is presented in this paper. The combustion reaction and particle concentration are taken into account in this method. With is method, one-dimensional freeboard model for radiative heat transfer has been made. Results from this model have been compared with the experimental results of a 130 t/h AFBC boiler. The distribution of flue gas temperature and heat flux at the waterwell are obtained. It is shown that this model has the advantage of good accuracy and requiring less computation time. The applicability of the predicted results in the AFBC boiler design and operation was also discussed.