In the current study, we sought to evaluate the diagnostic efficacies of conventional ultrasound(US), contrastenhanced US(CEUS), combined US and CEUS and magnetic resonance imaging(MRI) in detecting focal solid ...In the current study, we sought to evaluate the diagnostic efficacies of conventional ultrasound(US), contrastenhanced US(CEUS), combined US and CEUS and magnetic resonance imaging(MRI) in detecting focal solid breast lesions. Totally 117 patients with 120 BI-RADS category 4A-5 breast lesions were evaluated by conventional US and CEUS, and MRI, respectively. SonoVue was used as contrast agent in CEUS and injected as an intravenous bolus; nodule scan was performed 4 minutes after bolus injection. A specific sonographic quantification software was used to obtain color-coded maps of perfusion parameters for the investigated lesion, namely the time-intensity curve.The pattern of contrast enhancement and related indexes regarding the time-intensity curve were used to describe the lesions, comparatively with pathological results. Histopathologic examination revealed 46 benign and 74 malignant lesions. Sensitivity, specificity, and accuracy of US in detecting malignant breast lesions were 90.14%, 95.92%, and 92.52%, respectively. Meanwhile, CE-MRI showed sensitivity, specificity, and accuracy of 88.73%, 95.92%, and91.67%, respectively. The area under the ROC curve for combined US and CEUS in discriminating benign from malignant breast lesions was 0.936, while that of MRI was 0.923, with no significant difference between them, as well as among groups. The time-intensity curve of malignant hypervascular fibroadenoma and papillary lesions mostly showed a fast-in/fast-out pattern, with no good correlation between them(kappa 〈0.20). In conclusion, the combined use of conventional US and CEUS displays good agreement with MRI in differentiating benign from malignant breast lesions.展开更多
Compared with conventional planar optical image sensors,a curved focal plane array can simplify the lens design and improve the field of view.In this paper,we introduce the design and implementation of a segmented,hem...Compared with conventional planar optical image sensors,a curved focal plane array can simplify the lens design and improve the field of view.In this paper,we introduce the design and implementation of a segmented,hemispherical,CMOS-compatible silicon image plane for a 10-mm diameter spherical monocentric lens.To conform to the hemispherical focal plane of the lens,we use flexible gores that consist of arrays of spring-connected silicon hexagons.Mechanical functionality is demonstrated by assembling the 20-μm-thick silicon gores into a hemispherical test fixture.We have also fabricated and tested a photodiode array on a siliconon-insulator substrate for use with the curved imager.Optical testing shows that the fabricated photodiodes achieve good performance;the hemispherical imager enables a compact 160°field of view camera with >80% fill factor using a single spherical lens.展开更多
基金supported by the Natural Science Foundation of Jiangsu University(14KJB320003)
文摘In the current study, we sought to evaluate the diagnostic efficacies of conventional ultrasound(US), contrastenhanced US(CEUS), combined US and CEUS and magnetic resonance imaging(MRI) in detecting focal solid breast lesions. Totally 117 patients with 120 BI-RADS category 4A-5 breast lesions were evaluated by conventional US and CEUS, and MRI, respectively. SonoVue was used as contrast agent in CEUS and injected as an intravenous bolus; nodule scan was performed 4 minutes after bolus injection. A specific sonographic quantification software was used to obtain color-coded maps of perfusion parameters for the investigated lesion, namely the time-intensity curve.The pattern of contrast enhancement and related indexes regarding the time-intensity curve were used to describe the lesions, comparatively with pathological results. Histopathologic examination revealed 46 benign and 74 malignant lesions. Sensitivity, specificity, and accuracy of US in detecting malignant breast lesions were 90.14%, 95.92%, and 92.52%, respectively. Meanwhile, CE-MRI showed sensitivity, specificity, and accuracy of 88.73%, 95.92%, and91.67%, respectively. The area under the ROC curve for combined US and CEUS in discriminating benign from malignant breast lesions was 0.936, while that of MRI was 0.923, with no significant difference between them, as well as among groups. The time-intensity curve of malignant hypervascular fibroadenoma and papillary lesions mostly showed a fast-in/fast-out pattern, with no good correlation between them(kappa 〈0.20). In conclusion, the combined use of conventional US and CEUS displays good agreement with MRI in differentiating benign from malignant breast lesions.
文摘Compared with conventional planar optical image sensors,a curved focal plane array can simplify the lens design and improve the field of view.In this paper,we introduce the design and implementation of a segmented,hemispherical,CMOS-compatible silicon image plane for a 10-mm diameter spherical monocentric lens.To conform to the hemispherical focal plane of the lens,we use flexible gores that consist of arrays of spring-connected silicon hexagons.Mechanical functionality is demonstrated by assembling the 20-μm-thick silicon gores into a hemispherical test fixture.We have also fabricated and tested a photodiode array on a siliconon-insulator substrate for use with the curved imager.Optical testing shows that the fabricated photodiodes achieve good performance;the hemispherical imager enables a compact 160°field of view camera with >80% fill factor using a single spherical lens.