We demonstrate three-dimensional tomographic imaging vising a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane us...We demonstrate three-dimensional tomographic imaging vising a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane using a Fresnel lens with different frequencies of the imaging beam. This procedure allows the reconstruction of an object's tomographic contrast image by assembling the frequency-dependent images.展开更多
The far-field imaging properties of a high index microsphere lens spatially separated from the object are experimentally studied. Our experimental results show that, for a Blu-ray disk whose spacing is 300 nm, the hig...The far-field imaging properties of a high index microsphere lens spatially separated from the object are experimentally studied. Our experimental results show that, for a Blu-ray disk whose spacing is 300 nm, the high index microsphere lens also can discern the patterns of the object sample when the distance between the lens and the object is up to 5.4 μm. When the distance is increased from 0 to 5.4 μm, for the microsphere lens with a diameter of 24 μm, the lateral magnification increases from 3.5× to 5.5×, while the field of view decreases from 5.1 to 3.0 μm. By varying the distance between the lens and the object, the optical image can be optimized. We also indicate that the far-field imaging capability of a high index microsphere lens is dependent on the electromagnetic field intensityprofile of the photonic nanojet under different positions of the microsphere lens.展开更多
In this Letter, we present a high-speed volumetric imaging system based on structured illumination and an electrically tunable lens(ETL), where the ETL performs fast axial scanning at hundreds of Hz. In the system,a...In this Letter, we present a high-speed volumetric imaging system based on structured illumination and an electrically tunable lens(ETL), where the ETL performs fast axial scanning at hundreds of Hz. In the system,a digital micro-mirror device(DMD) is utilized to rapidly generate structured images at the focal plane in synchronization with the axial scanning unit. The scanning characteristics of the ETL are investigated theoretically and experimentally. Imaging experiments on pollen samples are performed to verify the optical cross-sectioning and fast axial scanning capabilities. The results show that our system can perform fast axial scanning and threedimensional(3D) imaging when paired with a high-speed camera, presenting an economic solution for advanced biological imaging applications.展开更多
An integrated microball lens fiber catheter probe is demonstrated, which has better lateral resolution and longer working distance than a corresponding bare fiber probe with diverging beam for Fourier domain optical c...An integrated microball lens fiber catheter probe is demonstrated, which has better lateral resolution and longer working distance than a corresponding bare fiber probe with diverging beam for Fourier domain optical coherence tomography (FDOCT). Simulation results are shown to gain the effect of the distance between the mieroball lens and the bare fiber to the focusing plane and beam width. The freedom of modifying the working distance and lateral resolution is shown. This is achieved by changing the gap distance between the single-mode fiber and the microball lens within the packaged surgical needle catheter without using an additional beam expander having a fixed length. The probe successfully acquired crosssectional images of ocular tissues from an animal sample with the proposed miniaturized imaging probe.展开更多
By employing the previous Voronoi approach and replacing its nearest neighbor approx- imation with Drizzle in iterative signal extraction, we develop a fast iterative Drizzle algorithm, namedfiDrizzle, to reconstruct ...By employing the previous Voronoi approach and replacing its nearest neighbor approx- imation with Drizzle in iterative signal extraction, we develop a fast iterative Drizzle algorithm, namedfiDrizzle, to reconstruct the underlying band-limited image from undersampled dithered frames. Compared with the existing iDrizzle, the new algorithm improves rate of convergence and accelerates the computational speed. Moreover, under the same conditions (e.g. the same number of dithers and iterations), fiDrizzle can make a better quality reconstruction than iDrizzle, due to the newly discov- ered High Sampling caused Decelerating Convergence (HSDC) effect in the iterative signal extraction process.fiDrizzle demonstrates its powerful ability to perform image deconvolution from undersampled dithers.展开更多
Two-photon polymerisation lithography enables the three-dimensional(3D)-printing of high-resolution micron-and nano-scale structures.Structures that are 3D-printed using proprietary resins are transparent and are suit...Two-photon polymerisation lithography enables the three-dimensional(3D)-printing of high-resolution micron-and nano-scale structures.Structures that are 3D-printed using proprietary resins are transparent and are suitable as optical components.However,achieving a mix of opaque and transparent structures in a single optical component is challenging and requires multiple material systems or the manual introduction of ink after fabrication.In this study,we investigated an overexposure printing process for laser decomposition,which typically produces uncontrollable and random‘burnt’structures.Specifically,we present a printing strategy to control this decomposition process,realising the on-demand printing of opaque or transparent structures in a single lithographic step using a single resin.Using this method,opaque structures can be printed with a minimum feature size of approximately 10μm,which exhibit<15%transmittance at a thickness of approximately 30μm.We applied this process to print an opaque aperture integrated with a transparent lens to demonstrate an improved imaging contrast.展开更多
文摘We demonstrate three-dimensional tomographic imaging vising a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane using a Fresnel lens with different frequencies of the imaging beam. This procedure allows the reconstruction of an object's tomographic contrast image by assembling the frequency-dependent images.
基金financial support for this research from the Doctoral Fund of Ministry of Education of China (No. 20133207110007)the National Natural Science Foundation of China (No. 61475073)
文摘The far-field imaging properties of a high index microsphere lens spatially separated from the object are experimentally studied. Our experimental results show that, for a Blu-ray disk whose spacing is 300 nm, the high index microsphere lens also can discern the patterns of the object sample when the distance between the lens and the object is up to 5.4 μm. When the distance is increased from 0 to 5.4 μm, for the microsphere lens with a diameter of 24 μm, the lateral magnification increases from 3.5× to 5.5×, while the field of view decreases from 5.1 to 3.0 μm. By varying the distance between the lens and the object, the optical image can be optimized. We also indicate that the far-field imaging capability of a high index microsphere lens is dependent on the electromagnetic field intensityprofile of the photonic nanojet under different positions of the microsphere lens.
基金supported by the National Natural Science Foundation of China(NSFC),General Program(No.51375415)the Development of a Flexure-based Optical Scanning System and a Multimodal Nonlinear Endomicroscope for in vivo Biological Studiesthe HKSAR Research Grants Council(RGC)General Research Fund(CUHK 14202815)
文摘In this Letter, we present a high-speed volumetric imaging system based on structured illumination and an electrically tunable lens(ETL), where the ETL performs fast axial scanning at hundreds of Hz. In the system,a digital micro-mirror device(DMD) is utilized to rapidly generate structured images at the focal plane in synchronization with the axial scanning unit. The scanning characteristics of the ETL are investigated theoretically and experimentally. Imaging experiments on pollen samples are performed to verify the optical cross-sectioning and fast axial scanning capabilities. The results show that our system can perform fast axial scanning and threedimensional(3D) imaging when paired with a high-speed camera, presenting an economic solution for advanced biological imaging applications.
基金supported by the World Class University Program funded by the Ministry of Education, Science, and Technology through the National Research Foundation of Korea (No. R31-10008)supported in part by NIH (No. BRP 1R01 EB 007969- 01)
文摘An integrated microball lens fiber catheter probe is demonstrated, which has better lateral resolution and longer working distance than a corresponding bare fiber probe with diverging beam for Fourier domain optical coherence tomography (FDOCT). Simulation results are shown to gain the effect of the distance between the mieroball lens and the bare fiber to the focusing plane and beam width. The freedom of modifying the working distance and lateral resolution is shown. This is achieved by changing the gap distance between the single-mode fiber and the microball lens within the packaged surgical needle catheter without using an additional beam expander having a fixed length. The probe successfully acquired crosssectional images of ocular tissues from an animal sample with the proposed miniaturized imaging probe.
基金supported by the National Basic Research Program of China (973 program, Nos. 2015CB857000 and 2013CB834900)the Foundation for Distinguished Young Scholars of Jiangsu Province (No. BK20140050)+1 种基金the ‘Strategic Priority Research Program the Emergence of Cosmological Structure’ of the CAS (No. XDB09010000)the National Natural Science Foundation of China (Nos. 11333008, 11233005, 11273061 and 11673065)
文摘By employing the previous Voronoi approach and replacing its nearest neighbor approx- imation with Drizzle in iterative signal extraction, we develop a fast iterative Drizzle algorithm, namedfiDrizzle, to reconstruct the underlying band-limited image from undersampled dithered frames. Compared with the existing iDrizzle, the new algorithm improves rate of convergence and accelerates the computational speed. Moreover, under the same conditions (e.g. the same number of dithers and iterations), fiDrizzle can make a better quality reconstruction than iDrizzle, due to the newly discov- ered High Sampling caused Decelerating Convergence (HSDC) effect in the iterative signal extraction process.fiDrizzle demonstrates its powerful ability to perform image deconvolution from undersampled dithers.
基金funded by the Singapore University of Technology and Design(SUTD)through the SUTD Ph.D.Fellowship.
文摘Two-photon polymerisation lithography enables the three-dimensional(3D)-printing of high-resolution micron-and nano-scale structures.Structures that are 3D-printed using proprietary resins are transparent and are suitable as optical components.However,achieving a mix of opaque and transparent structures in a single optical component is challenging and requires multiple material systems or the manual introduction of ink after fabrication.In this study,we investigated an overexposure printing process for laser decomposition,which typically produces uncontrollable and random‘burnt’structures.Specifically,we present a printing strategy to control this decomposition process,realising the on-demand printing of opaque or transparent structures in a single lithographic step using a single resin.Using this method,opaque structures can be printed with a minimum feature size of approximately 10μm,which exhibit<15%transmittance at a thickness of approximately 30μm.We applied this process to print an opaque aperture integrated with a transparent lens to demonstrate an improved imaging contrast.