The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ...The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.展开更多
Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability res...Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability reservoirs is extremely challenging.Commonly,traditional SI models based on single or averaged capillary tortuosity ignore the influence of heterogeneity of pore seepage channels and the threshold pressure(TP)on imbibition.Therefore,in this work,based on capillary model and fractal theory,a mathematical model of characterizing SI considering heterogeneity of pore seepage channels is established.On this basis,the threshold pressure was introduced to determine the pore radius at which the wetted phase can displace oil.The proposed new SI model was verified by imbibition experimental data.The study shows that for weakly heterogeneous cores with permeability of 0-1 m D,the traditional SI model can characterize the imbibition process relatively accurately,and the new imbibition model can increase the coefficient of determination by 1.05 times.However,traditional model has serious deviations in predicting the imbibition recovery for cores with permeability of 10-50 m D.The new SI model coupling with heterogeneity of pore seepage channels and threshold pressure effectively solves this problem,and the determination coefficient is increased from 0.344 to 0.922,which is increased by2.68 times.For low-permeability reservoirs,the production of the oil in transitional pores(0.01-0.1μm)and mesopores(0.1-1μm)significantly affects the imbibition recovery,as the research shows that when the heterogeneity of pore seepage channels is ignored,the oil recovery in transitional pores and mesopores decreases by 7.54%and 4.26%,respectively.Sensitivity analysis shows that increasing interfacial tension,decreasing contact angle,oil-water viscosity ratio and threshold pressure will increase imbibition recovery.In addition,there are critical values for the influence of these factors on the imbibition recovery,which provides theoretical support for surfactant optimization.展开更多
Shale gas is an important component of unconventional oil and gas resources.Studying the imbibition behavior is helpful to optimize flowback parameters and enhance gas recovery.Recent imbibition studies have focused o...Shale gas is an important component of unconventional oil and gas resources.Studying the imbibition behavior is helpful to optimize flowback parameters and enhance gas recovery.Recent imbibition studies have focused on shale matrix,and the pressure conditions discussed were mostly atmospheric.The initial imbibition behavior begins from propped fractures to matrix,but there are few studies working on explaining the imbibition behavior in propped fractures or the phenomenon of many shale wells exhibit higher productivity after a“soaking”period.Therefore,propped fracture samples were designed for imbibition and migration experiments.In order to accurately study the mechanism and main influencing factors of fracturing fluid imbibition and migration in propped and unpropped shale fractures under high temperature and high pressure,a series of experiments based on nuclear magnetic resonance(NMR)were carried out.Results showed that NMR T_(2) spectra of all samples exhibited a bimodal distribution.The final imbibition volume of fracturing fluid was positively related to pressure and fracture width.The imbibition effect of fracturing fluid was more evident in matrix pores under high pressure.In the migration during soaking stage,the fracturing fluid gradually migrated from large pores to small pores and gradually displaced the shale gas from the matrix,thus allowing the water blocking in propped fractures to self-unlock to some extent.Gas permeability decreased in the imbibition stage,while it recovered in the migration stage to some extent.展开更多
Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imb...Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imbibition within the reservoir. Several variables influence the eventual recovery rate within this procedure, including slickwater composition, formation temperature, degree of reservoir fracture development, and the reservoir characteristics. Nonetheless, the underlying mechanisms governing these influences remain relatively understudied. In this investigation, using the Chang-7 block of the Changqing Oilfield as the study site, we employ EM-30 slickwater fracturing fluid to explore the effects of the drag-reducing agent concentration, imbibition temperature, core permeability, and core fracture development on spontaneous imbibition. An elevated drag-reducing agent concentration is observed to diminish the degree of medium and small pore utilization. Furthermore, higher temperatures and an augmented permeability enhance the fluid flow properties, thereby contributing to an increased utilization rate across all pore sizes. Reduced fracture development results in a lower fluid utilization across diverse pore types. This study deepens our understanding of the pivotal factors affecting spontaneous imbibition in tight reservoirs following fracturing. The findings act as theoretical, technical, and scientific foundations for optimizing fracturing strategies in tight oil reservoir transformations.展开更多
An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were ob...An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were obtained from history matching between forced imbibition experimental data and core-scale reservoir simulation results and taken into a large scale reservoir model to mimic the forced imbibition behavior during the well shut-in period after fracturing.The optimization of the stimulated reservoir volume(SRV)fracturing fluid volume strength should meet the requirements of estimated ultimate recovery(EUR),increased oil recovery by forced imbibition and enhancement of formation pressure and the fluid volume strength of fracturing fluid should be controlled around a critical value to avoid either insufficiency of imbibition displacement caused by insufficient fluid amount or increase of costs and potential formation damage caused by excessive fluid amount.Reservoir simulation results showed that SRV fracturing fluid volume strength positively correlated with single-well EUR and an optimal fluid volume strength existed,above which the single-well EUR increase rate kept decreasing.An optimized increase of SRV fracturing fluid volume and shut-in time would effectively increase the formation pressure and enhance well production.Field test results of well X-1 proved the practicality of established optimization method of SRV fracturing fluid volume strength on significant enhancement of shale oil well production.展开更多
A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs,revealing the patterns of change in pressure field,seepage field,and stress ...A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs,revealing the patterns of change in pressure field,seepage field,and stress field after long-term water injection in tight oil reservoirs.Based on this,a technique for enhanced oil recovery(EOR)combining multi-field reconstruction and combination of displacement and imbibition in tight oil reservoirs has been proposed.The study shows that after long-term water flooding for tight oil development,the pressure diffusion range is limited,making it difficult to establish an effective displacement system.The variation in geostress exhibits diversity,with the change in horizontal minimum principal stress being greater than that in horizontal maximum principal stress,and the variation around the injection wells being more significant than that around the production wells.The deflection of geostress direction around injection wells is also large.The technology for EOR through multi-field reconstruction and combination of displacement and imbibition employs water injection wells converted to production and large-scale fracturing techniques to restructure the artificial fracture network system.Through a full lifecycle energy replenishment method of pre-fracturing energy supplementation,energy increase during fracturing,well soaking for energy storage,and combination of displacement and imbibition,it effectively addresses the issue of easy channeling of the injection medium and difficult energy replenishment after large-scale fracturing.By intensifying the imbibition effect through the coordination of multiple wells,it reconstructs the combined system of displacement and imbibition under a complex fracture network,transitioning from avoiding fractures to utilizing them,thereby improving microscopic sweep and oil displacement efficiencies.Field application in Block Yuan 284 of the Huaqing Oilfield in the Ordos Basin has demonstrated that this technology increases the recovery factor by 12 percentage points,enabling large scale and efficient development of tight oil.展开更多
[Objective] This study aimed to investigate the effect of potyamine priming on physiological and biochemical variations of Lolium perenne embryos and seed germination. [Method] With annual Lolium perenne (Diamond T a...[Objective] This study aimed to investigate the effect of potyamine priming on physiological and biochemical variations of Lolium perenne embryos and seed germination. [Method] With annual Lolium perenne (Diamond T and Grazing-8000) as experimental materials, after priming with 0.5 mmol/L putrescine (Put), spermidine (Spd) and spermine (Spm) for 24 h and chilling imbibition at 5 ℃ for 12, 24, 36 and 48 h, the effect of Put, Spd and Spm priming on chilling tolerance and germination ability of annual Lolium perenne seeds during imbibition was investigated. [Result] Put, Spd and Spm priming improved the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) and content of soluble protein content under low temperature stress, significantly in-creased the germination rate, and shortened the average germination duration. After chilling imbibition for 48 h, compared with the control, the average germination rate of annual Lolium perenne seeds was improved by 15.5% and 12.0% after Put, Spd and Spm priming, and the average germination duration was shortened by 1.21 and 1.14 d. During seed imbibition, the chilling tolerance of Grazing-8000 was stronger than that of Diamond T. Overall, Put, Spd and Spm treatment could increase the chilling tolerance of annual Lolium perenne seeds during imbibition, and improve the germination ability of seeds under low temperature stress. [Conclusion] Results of this study provided theoretical basis for the application of seed priming technology in the production of annual ryegrass.展开更多
Countercurrent imbibition is an important mechanism for tight oil recovery,that is,water imbibes spontaneously from the fracture into the porous matrix while oil flows reversely into the fracture.Its significance over...Countercurrent imbibition is an important mechanism for tight oil recovery,that is,water imbibes spontaneously from the fracture into the porous matrix while oil flows reversely into the fracture.Its significance over cocurrent imbibition and forced imbibition is highlighted when permeability reduces.We used the computed tomography(CT)scanning to measure the one-dimensional evolution of water saturation profile and countercurrent imbibition distance(CID)at different fluid pressures,initial water saturations,and permeability.Surprisingly,experiments show that CID evolution for tight reservoir cores dramatically deviates from the classical diffusive rule(i.e.,evolutes proportional to square root of time,t^(0.5)).At early stage,CID extends faster than t^(0.5)(super-diffusive);while at late stage,CID extends much slower than t^(0.5)(sub-diffusive).After tens of hours,the CID change becomes too slow to be practically efficient for tight oil recovery.This research demonstrates that this deviation from classic theory is a result of(1)a much longer characteristic capillary length than effective invasion depth,which eliminates full development of a classical displacement front;and(2)non-zero flow at low water saturation,which was always neglected for conventional reservoir and is amplified in sub-mili-Darcy rocks.To well depict the details of the imbibition front in this situation,we introduce non-zero wetting phase fluidity at low saturation into classical countercurrent imbibition model and conduct numerical simulations,which successfully rationalizes the non-diffusive behavior and fits experimental data.Our data and theory imply an optimum soaking time in tight oil recovery by countercurrent imbibition,beyond which increasing exposed fracture surface area becomes a more efficient enhanced oil recovery(EOR)strategy than soaking for longer time.展开更多
Based on Darcy's Law and the Helmholta-Smoluchowski equation, an imbibition velocity formula for the water phase with an electric field was deduced, showing that the imbibition velocity with an electric field is to v...Based on Darcy's Law and the Helmholta-Smoluchowski equation, an imbibition velocity formula for the water phase with an electric field was deduced, showing that the imbibition velocity with an electric field is to various extents not only related to the rock permeability and characteristic length, the fluid viscosity, the oil-water interface tension and the gravity of the imbibing brine, but also to the fluid dielectric permittivity, zeta potential, applied electric field direction, and strength. Imbibition experiments with electric fields that are different in direction and strength were conducted, showing that application of a positive electric field enhances the imbibition velocity and increases the imbibition recovery ratio, while application of a negative electric field reduces the imbibition velocity and decreases the imbibition recovery ratio. The imbibition recovery ratio with a positive electric field increases with the strength of the electric field, and the imbibition recovery ratio with a negative electric field is lower than that without an electric field.展开更多
The oil-water imbibition equation in the nano-scale pores considering the dynamic contact angle effect, nanoconfinement effect, inertia effect, and inlet end effect was established, and the relation between the fricti...The oil-water imbibition equation in the nano-scale pores considering the dynamic contact angle effect, nanoconfinement effect, inertia effect, and inlet end effect was established, and the relation between the friction coefficient of solid-oil-water three-phase contact line and the fluid viscosity in the interface zone was derived. In combination with the capillary bundle model and the lognormal distribution theory, the imbibition model of tight core was obtained and key parameters affecting imbibition dynamics were analyzed. The study shows that in the process of nanopore imbibition, the dynamic contact angle effect has the most significant impact on the imbibition, followed by nanoconfinement effect(multilayer sticking effect and slippage effect), and the inertia effect and inlet end effect have the least impact;in the initial stage of imbibition, the effect of inertial force decreases, and the effect of contact line friction increases, so the dynamic contact angle gradually increases from the initial equilibrium contact angle to the maximum and then remains basically stable;in the later stage of imbibition,the effect of contact line friction decreases, and the contact angle gradually decreases from the maximum dynamic contact angle and approaches the initial equilibrium contact angle;as the pore radius decreases, the dynamic contact angle effect increases in the initial stage of imbibition and decreases in the later stage of imbibition;as the oil-water interfacial tension increases, the imbibition power increases, and the dynamic contact angle effect increases;there is a critical value for the influence of interfacial tension on the imbibition dynamics. In improving oil recovery by imbibition in tight oil reservoir, interfacial tension too low cannot achieve good imbibition effect, and the best interfacial tension needs to be obtained through optimization.展开更多
Spontaneous imbibition of water-based frac- turing fluids into the shale matrix is considered to be the main mechanism responsible for the high volume of water loss during the flowback period. Understanding the matrix...Spontaneous imbibition of water-based frac- turing fluids into the shale matrix is considered to be the main mechanism responsible for the high volume of water loss during the flowback period. Understanding the matrix imbibition capacity and rate helps to determine the frac- turing fluid volume, optimize the flowback design, and to analyze the influences on the production of shale gas. Imbibition experiments were conducted on shale samples from the Sichuan Basin, and some tight sandstone samples from the Ordos Basin. Tight volcanic samples from the Songliao Basin were also investigated for comparison. The effects of porosity, clay minerals, surfactants, and KC1 solutions on the matrix imbibition capacity and rate were systematically investigated. The results show that the imbibition characteristic of tight rocks can be characterized by the imbibition curve shape, the imbibition capacity, the imbibition rate, and the diffusion rate. The driving forces of water imbibition are the capillary pressure and the clay absorption force. For the tight rocks with low clay contents, the imbibition capacity and rate are positively correlated with the porosity. For tight rocks with high clay content, the type and content of clay minerals are the most impor- tant factors affecting the imbibition capacity. The imbibed water volume normalized by the porosity increases with an increasing total clay content. Smectite and illite/smectite tend to greatly enhance the water imbibition capacity. Furthermore, clay-rich tight rocks can imbibe a volume of water greater than their measured pore volume. The aver- age ratio of the imbibed water volume to the pore volume is approximately 1.1 in the Niutitang shale, 1.9 in the Lujiaping shale, 2.8 in the Longmaxi shale, and 4.0 in the Yingcheng volcanic rock, and this ratio can be regarded as a parameter that indicates the influence of clay. In addition, surfactants can change the imbibition capacity due to alteration of the capillary pressure and wettability. A 10 wt% KC1 solution can inhibit clay absorption to reduce the imbibition capacity.展开更多
Hydraulic fracturing technology can significantly increase oil production from tight oil formations, but performance data show that production declines rapidly. In the long term, it is necessary to increase the develo...Hydraulic fracturing technology can significantly increase oil production from tight oil formations, but performance data show that production declines rapidly. In the long term, it is necessary to increase the development efficiency of block matrix, surfactant-aided imbibition is a potential way. The current work aimed to explain comprehensively how surfactants can enhance the imbibition rate. Laboratory experiments were performed to investigate the effects of wettability, interfacial tension(IFT), and relative permeability as the key parameters underlying surfactant solution imbibition. Two different types of surfactants, sodium dodecyl sulfate and polyethylene glycol octylphenol ether, at varied concentrations were tested on reservoir rocks. Experimental results showed that the oil recovery rate increased with increased wettability alteration and IFT and decreased residual oil saturation. A mechanistic simulator developed in previous studies was used to perform parametric analysis after successful laboratory-scale validation. Results were proven by parametric studies. This study,which examined the mechanism and factors influencing surfactant solution imbibition, can improve understanding of surfactant-aided imbibition and surfactant screening.展开更多
Tight sands are abundant in nanopores leading to a high capillary pressure and normally a low fluid injectivity.As such,spontaneous imbibition might be an effective mechanism for improving oil recovery from tight sand...Tight sands are abundant in nanopores leading to a high capillary pressure and normally a low fluid injectivity.As such,spontaneous imbibition might be an effective mechanism for improving oil recovery from tight sands after fracturing.The chemical agents added to the injected water can alter the interfacial properties,which could help further enhance the oil recovery by spontaneous imbibition.This study explores the possibility of using novel chemicals to enhance oil recovery from tight sands via spontaneous imbibition.We experimentally examine the effects of more than ten different chemical agents on spontaneous imbibition,including a cationic surfactant(C12 TAB),two anionic surfactants(0242 and 0342),an ionic liquid(BMMIM BF4),a high pH solution(NaBO2),and a series of house-made deep eutectic solvents(DES3-7,9,11,and 14).The interfacial tensions(IFT)between oil phase and some chemical solutions are also determined.Experimental results indicate that both the ionic liquid and cationic surfactant used in this study are detrimental to spontaneous imbibition and decrease the oil recovery from tight sands,even though cationic surfactant significantly decreases the oil-water IFT while ionic liquid does not.The high pH NaBO2 solution does not demonstrate significant effect on oil recovery improvement and IFT reduction.The anionic surfactants(O242 and O342)are effective in enhancing oil recovery from tight sands through oil-water IFT reduction and emulsification effects.The DESs drive the rock surface to be more water-wet,and a specific formulation(DES9)leads to much improvement on oil recovery under counter-current imbibition condition.This preliminary study would provide some knowledge about how to optimize the selection of chemicals for improving oil recovery from tight reservoirs.展开更多
The spontaneous imbibition(SI)process in shale oil reservoirs is not only infuenced by capillary force,but also by the osmotic pressure between the fracturing fuid and formation water in the nanopores media.In this st...The spontaneous imbibition(SI)process in shale oil reservoirs is not only infuenced by capillary force,but also by the osmotic pressure between the fracturing fuid and formation water in the nanopores media.In this study,experimental methods are used to investigate the mechanisms of osmosis in the SI,taking into account the presence of initial formation water in shale oil reservoirs.To investigate the efect of osmosis,SI experiments were performed on the fne-grained felsic shale of the Qikou sag of Dagang oilfeld.Low-feld NMR testers and high-precision electronic balances are utilized for the measuring of oil–water migration.The results show that,when Sw≠0,high-salinity fuid SI can be divided into four stages:initial imbibition stage,drainage stage,secondary imbibition stage and stationary stage;when Sw=0,there is no drainage stage of high-salinity fuid SI;when Sw≠0 or Sw=0,low-salinity fuid SI can be called the“osmosis-enhanced SI”;and we have found that“newly formed pores or microfractures”as well as reducing salinity can promote SI.This article presents a systematic study of SI of shale oil reservoirs under the infuence of osmosis,which provide useful information for reservoir numerical simulation and development program design.展开更多
Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To a...Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To achieve appropriate ultimate oil recovery in these reservoirs,a water-based enhanced oil recovery method must be capable of altering the wettability of matrix blocks.Previous studies showed that carbonated water can alter wettability of carbonate oil-wet rocks toward less oil-wet or neutral wettability conditions,but the degree of modification is not high enough to allow water to imbibe spontaneously into the matrix blocks at an effective rate.In this study,we manipulated carbonated brine chemistry to enhance its wettability alteration features and hence to improve water imbibition rate and ultimate oil recovery upon spontaneous imbibition in dolomite rocks.First,the contact angle and interfacial tension(IFT)of brine/crude oil systems were measured for several synthetic brine samples with different compositions.Thereafter,two solutions with a significant difference in WAI(wettability alteration index)but approximately equal brine/oil IFT were chosen for spontaneous imbibition experiments.In the next step,spontaneous imbibition experiments at ambient and high pressures were conducted to evaluate the ability of carbonated smart water in enhancing the spontaneous imbibition rate and ultimate oil recovery in dolomite rocks.Experimental results showed that an appropriate adjustment of the imbibition brine(i.e.,carbonated smart water)chemistry improves imbibition rate of carbonated water in oil-wet dolomite rocks as well as the ultimate oil recovery.展开更多
An experimental study was performed to investigate the impact of low salinity water on wettability alteration in carbonate core samples from southern Iranian reservoirs by spontaneous imbibition. In this paper, the ef...An experimental study was performed to investigate the impact of low salinity water on wettability alteration in carbonate core samples from southern Iranian reservoirs by spontaneous imbibition. In this paper, the effect of temperature, salinity,permeability and connate water were investigated by comparing the produced hydrocarbon curves. Contact angle measurements were taken to confirm the alteration of surface wettability of porous media. Oil recovery was enhanced by increasing the dilution ratio of sea water, and there existed an optimum dilution ratio at which the highest oil recovery was achieved. In addition, temperature had a very significant impact on oil recovery from carbonate rocks. Furthermore, oil recovery from a spontaneous imbibition process was directly proportional to the permeability of the core samples. The presence of connate water saturation inside the porous media facilitated oil production significantly. Also, the oil recovery from porous media was highly dependent on ion repulsion/attraction activity of the rock surface which directly impacts on the wettability conditions. Finally, the highest ion attraction percentage was measured for sodium while there was no significant change in pH for all experiments.展开更多
Spontaneous imbibition is an important phenomenon in tight reservoirs.The existence of a large number of fractures and micro-nano pores is the key factor affecting the spontaneous imbibition of tight reservoirs.In thi...Spontaneous imbibition is an important phenomenon in tight reservoirs.The existence of a large number of fractures and micro-nano pores is the key factor affecting the spontaneous imbibition of tight reservoirs.In this study,based on high-pressure mercury injection and nuclear magnetic resonance experiments,the pore distribution of tight sandstone is described.The influence of fractures,core porosity and permeability,and surfactants on the spontaneous imbibition of tight sandstone are studied by physical fracturing,interfacial tension test,wettability test and imbibition experiments.The results show that:the pore radius of tight sandstone is concentrated in 0.01-1 mm.Fractures can effectively reduce the oil drop adsorption on the core surface,enhancing the imbibition recovery of the tight sandstone with an increase of about 10%.As the number of fractures increases,the number of oil droplets adsorbed on the core surface decrease and the imbibition rate increases.The imbibition recovery increases with the increase in pore connectivity,while the imbibition rate increases with the increases in core porosity and permeability.The surfactant can improve the core water wettability and reduce the oilwater interfacial tension,reducing the adsorption of oil droplets on the core surface,and improving the core imbibition recovery with an increase of about 15%.In a word,the existence of fractures and surfactants can enhance the pore connectivity of the reservoir,reduce the adsorption of oil droplets on the core surface,and improve the imbibition rate and recovery rate of the tight oil reservoir.展开更多
A number of internal signals are required for seed germination.However,the precise signalling responses in the initial imbibition of seed germination are not yet fully understood in rice.In this study,the RNA sequenci...A number of internal signals are required for seed germination.However,the precise signalling responses in the initial imbibition of seed germination are not yet fully understood in rice.In this study,the RNA sequencing(RNA-Seq)approach was conducted in 8 h imbibed seeds to understand the signalling responses in the initial imbibition of rice seed germination.A total of 563 differentially expressed genes(DEGs)with at least 4-fold change were identified in 8 h imbibed seeds compared to dry seeds.MapMan analysis revealed that the majority of signalling response-related DEGs were hormone-and transcription factor-related genes,in which the largest number of DEGs belong to the AP2-domain-containing regulators,and their expressions were significantly induced in the initial imbibition of seed germination in rice.Moreover,at least five AP2-domain-containing transcription factor OsDREBs were identified in the initial imbibition of rice seed germination,and the expressions of 251 DEGs were putatively regulated by OsDREBs through the dehydration-responsive element(DRE)cis-element assay.It suggested that the OsDREBs might play important roles in the regulation of initial seed imbibition in rice.The identified genes provide a valuable resource to study the signalling regulation of seed germination in the future.展开更多
Shale oil formations contain both inorganic and organic media.The organic matter holds both free oil in the pores and dissolved oil within the kerogen molecules.The free oil flow in organic pores and the dissolved oil...Shale oil formations contain both inorganic and organic media.The organic matter holds both free oil in the pores and dissolved oil within the kerogen molecules.The free oil flow in organic pores and the dissolved oil diffusion in kerogen molecules are coupled together.The molecular flow of free n-alkanes is an important process of shale oil accumulation and production.To study the dynamics of imbibition process of n-alkane molecules into kerogen slits,molecular dynamics(MD)simulations are conducted.Effects of slit width,temperature,and n-alkane types on the penetration speed,dynamic contact angle,and molecular conformations were analyzed.Results showed that molecular transportation of n-alkanes is dominated by molecular structure and molecular motion at this scale.The space-confinement conformational changes of molecules slow down the filling speeds in the narrow slits.The n-alkane molecules with long carbon chains require more time to undergo conformational changes.The high content of short-chain alkanes and high temperature facilitate the flow of alkane mixtures in kerogen slits.Results obtained from this study are useful for understanding the underlying nanoscale flow mechanism in shale formations.展开更多
基金funded by the National key R&D Program of China(No.2023YFE0120700)the National Natural Science Foundation of China(No.51934005)+2 种基金the Shaanxi Province 2023 Innovation Capability Support Plan(No.2023KJXX-122)the Technology Innovation Leading Program of Shaanxi(No.2022 PT-08)the Project of Youth Innovation Team of Shaanxi Universities(No.22JP063).
文摘The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.
基金supported by China Natural Science Foundation(Grant No.52274053)Beijing Natural Science Foundation(Grant No.3232028)Open Fund of State Key Laboratory of Offshore Oil Exploitation(Grant No.CCL2021RCPS0515KQN)。
文摘Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability reservoirs is extremely challenging.Commonly,traditional SI models based on single or averaged capillary tortuosity ignore the influence of heterogeneity of pore seepage channels and the threshold pressure(TP)on imbibition.Therefore,in this work,based on capillary model and fractal theory,a mathematical model of characterizing SI considering heterogeneity of pore seepage channels is established.On this basis,the threshold pressure was introduced to determine the pore radius at which the wetted phase can displace oil.The proposed new SI model was verified by imbibition experimental data.The study shows that for weakly heterogeneous cores with permeability of 0-1 m D,the traditional SI model can characterize the imbibition process relatively accurately,and the new imbibition model can increase the coefficient of determination by 1.05 times.However,traditional model has serious deviations in predicting the imbibition recovery for cores with permeability of 10-50 m D.The new SI model coupling with heterogeneity of pore seepage channels and threshold pressure effectively solves this problem,and the determination coefficient is increased from 0.344 to 0.922,which is increased by2.68 times.For low-permeability reservoirs,the production of the oil in transitional pores(0.01-0.1μm)and mesopores(0.1-1μm)significantly affects the imbibition recovery,as the research shows that when the heterogeneity of pore seepage channels is ignored,the oil recovery in transitional pores and mesopores decreases by 7.54%and 4.26%,respectively.Sensitivity analysis shows that increasing interfacial tension,decreasing contact angle,oil-water viscosity ratio and threshold pressure will increase imbibition recovery.In addition,there are critical values for the influence of these factors on the imbibition recovery,which provides theoretical support for surfactant optimization.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(Grant Nos.52174036,51774243,51904257,51874251)the Sichuan Province Science and Technology Program(Grant Nos.2021YJ0345,2022JDJQ0009,2022NSFSC0186).
文摘Shale gas is an important component of unconventional oil and gas resources.Studying the imbibition behavior is helpful to optimize flowback parameters and enhance gas recovery.Recent imbibition studies have focused on shale matrix,and the pressure conditions discussed were mostly atmospheric.The initial imbibition behavior begins from propped fractures to matrix,but there are few studies working on explaining the imbibition behavior in propped fractures or the phenomenon of many shale wells exhibit higher productivity after a“soaking”period.Therefore,propped fracture samples were designed for imbibition and migration experiments.In order to accurately study the mechanism and main influencing factors of fracturing fluid imbibition and migration in propped and unpropped shale fractures under high temperature and high pressure,a series of experiments based on nuclear magnetic resonance(NMR)were carried out.Results showed that NMR T_(2) spectra of all samples exhibited a bimodal distribution.The final imbibition volume of fracturing fluid was positively related to pressure and fracture width.The imbibition effect of fracturing fluid was more evident in matrix pores under high pressure.In the migration during soaking stage,the fracturing fluid gradually migrated from large pores to small pores and gradually displaced the shale gas from the matrix,thus allowing the water blocking in propped fractures to self-unlock to some extent.Gas permeability decreased in the imbibition stage,while it recovered in the migration stage to some extent.
基金The authors sincerely appreciate the financial support from the National Natural Science Foundation of China(No.52074279,51874261).
文摘Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imbibition within the reservoir. Several variables influence the eventual recovery rate within this procedure, including slickwater composition, formation temperature, degree of reservoir fracture development, and the reservoir characteristics. Nonetheless, the underlying mechanisms governing these influences remain relatively understudied. In this investigation, using the Chang-7 block of the Changqing Oilfield as the study site, we employ EM-30 slickwater fracturing fluid to explore the effects of the drag-reducing agent concentration, imbibition temperature, core permeability, and core fracture development on spontaneous imbibition. An elevated drag-reducing agent concentration is observed to diminish the degree of medium and small pore utilization. Furthermore, higher temperatures and an augmented permeability enhance the fluid flow properties, thereby contributing to an increased utilization rate across all pore sizes. Reduced fracture development results in a lower fluid utilization across diverse pore types. This study deepens our understanding of the pivotal factors affecting spontaneous imbibition in tight reservoirs following fracturing. The findings act as theoretical, technical, and scientific foundations for optimizing fracturing strategies in tight oil reservoir transformations.
文摘An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were obtained from history matching between forced imbibition experimental data and core-scale reservoir simulation results and taken into a large scale reservoir model to mimic the forced imbibition behavior during the well shut-in period after fracturing.The optimization of the stimulated reservoir volume(SRV)fracturing fluid volume strength should meet the requirements of estimated ultimate recovery(EUR),increased oil recovery by forced imbibition and enhancement of formation pressure and the fluid volume strength of fracturing fluid should be controlled around a critical value to avoid either insufficiency of imbibition displacement caused by insufficient fluid amount or increase of costs and potential formation damage caused by excessive fluid amount.Reservoir simulation results showed that SRV fracturing fluid volume strength positively correlated with single-well EUR and an optimal fluid volume strength existed,above which the single-well EUR increase rate kept decreasing.An optimized increase of SRV fracturing fluid volume and shut-in time would effectively increase the formation pressure and enhance well production.Field test results of well X-1 proved the practicality of established optimization method of SRV fracturing fluid volume strength on significant enhancement of shale oil well production.
基金Supported by the Joint Fund Project of the National Natural Science Foundation of China(U22B2075).
文摘A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs,revealing the patterns of change in pressure field,seepage field,and stress field after long-term water injection in tight oil reservoirs.Based on this,a technique for enhanced oil recovery(EOR)combining multi-field reconstruction and combination of displacement and imbibition in tight oil reservoirs has been proposed.The study shows that after long-term water flooding for tight oil development,the pressure diffusion range is limited,making it difficult to establish an effective displacement system.The variation in geostress exhibits diversity,with the change in horizontal minimum principal stress being greater than that in horizontal maximum principal stress,and the variation around the injection wells being more significant than that around the production wells.The deflection of geostress direction around injection wells is also large.The technology for EOR through multi-field reconstruction and combination of displacement and imbibition employs water injection wells converted to production and large-scale fracturing techniques to restructure the artificial fracture network system.Through a full lifecycle energy replenishment method of pre-fracturing energy supplementation,energy increase during fracturing,well soaking for energy storage,and combination of displacement and imbibition,it effectively addresses the issue of easy channeling of the injection medium and difficult energy replenishment after large-scale fracturing.By intensifying the imbibition effect through the coordination of multiple wells,it reconstructs the combined system of displacement and imbibition under a complex fracture network,transitioning from avoiding fractures to utilizing them,thereby improving microscopic sweep and oil displacement efficiencies.Field application in Block Yuan 284 of the Huaqing Oilfield in the Ordos Basin has demonstrated that this technology increases the recovery factor by 12 percentage points,enabling large scale and efficient development of tight oil.
基金Supported by Agricultural Research Project of Guizhou Province([2010]No.3045)~~
文摘[Objective] This study aimed to investigate the effect of potyamine priming on physiological and biochemical variations of Lolium perenne embryos and seed germination. [Method] With annual Lolium perenne (Diamond T and Grazing-8000) as experimental materials, after priming with 0.5 mmol/L putrescine (Put), spermidine (Spd) and spermine (Spm) for 24 h and chilling imbibition at 5 ℃ for 12, 24, 36 and 48 h, the effect of Put, Spd and Spm priming on chilling tolerance and germination ability of annual Lolium perenne seeds during imbibition was investigated. [Result] Put, Spd and Spm priming improved the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) and content of soluble protein content under low temperature stress, significantly in-creased the germination rate, and shortened the average germination duration. After chilling imbibition for 48 h, compared with the control, the average germination rate of annual Lolium perenne seeds was improved by 15.5% and 12.0% after Put, Spd and Spm priming, and the average germination duration was shortened by 1.21 and 1.14 d. During seed imbibition, the chilling tolerance of Grazing-8000 was stronger than that of Diamond T. Overall, Put, Spd and Spm treatment could increase the chilling tolerance of annual Lolium perenne seeds during imbibition, and improve the germination ability of seeds under low temperature stress. [Conclusion] Results of this study provided theoretical basis for the application of seed priming technology in the production of annual ryegrass.
文摘Countercurrent imbibition is an important mechanism for tight oil recovery,that is,water imbibes spontaneously from the fracture into the porous matrix while oil flows reversely into the fracture.Its significance over cocurrent imbibition and forced imbibition is highlighted when permeability reduces.We used the computed tomography(CT)scanning to measure the one-dimensional evolution of water saturation profile and countercurrent imbibition distance(CID)at different fluid pressures,initial water saturations,and permeability.Surprisingly,experiments show that CID evolution for tight reservoir cores dramatically deviates from the classical diffusive rule(i.e.,evolutes proportional to square root of time,t^(0.5)).At early stage,CID extends faster than t^(0.5)(super-diffusive);while at late stage,CID extends much slower than t^(0.5)(sub-diffusive).After tens of hours,the CID change becomes too slow to be practically efficient for tight oil recovery.This research demonstrates that this deviation from classic theory is a result of(1)a much longer characteristic capillary length than effective invasion depth,which eliminates full development of a classical displacement front;and(2)non-zero flow at low water saturation,which was always neglected for conventional reservoir and is amplified in sub-mili-Darcy rocks.To well depict the details of the imbibition front in this situation,we introduce non-zero wetting phase fluidity at low saturation into classical countercurrent imbibition model and conduct numerical simulations,which successfully rationalizes the non-diffusive behavior and fits experimental data.Our data and theory imply an optimum soaking time in tight oil recovery by countercurrent imbibition,beyond which increasing exposed fracture surface area becomes a more efficient enhanced oil recovery(EOR)strategy than soaking for longer time.
基金supported by the National Key Basic Research Development Program of China (Grant No. 2002CCA00700)
文摘Based on Darcy's Law and the Helmholta-Smoluchowski equation, an imbibition velocity formula for the water phase with an electric field was deduced, showing that the imbibition velocity with an electric field is to various extents not only related to the rock permeability and characteristic length, the fluid viscosity, the oil-water interface tension and the gravity of the imbibing brine, but also to the fluid dielectric permittivity, zeta potential, applied electric field direction, and strength. Imbibition experiments with electric fields that are different in direction and strength were conducted, showing that application of a positive electric field enhances the imbibition velocity and increases the imbibition recovery ratio, while application of a negative electric field reduces the imbibition velocity and decreases the imbibition recovery ratio. The imbibition recovery ratio with a positive electric field increases with the strength of the electric field, and the imbibition recovery ratio with a negative electric field is lower than that without an electric field.
基金Supported by National Natural Science Foundation of China (NO. 52174041)Beijing Natural Science Foundation (NO. 2184120)Science Foundation of China University of Petroleum,Beijing (No. 2462018YJRC033)。
文摘The oil-water imbibition equation in the nano-scale pores considering the dynamic contact angle effect, nanoconfinement effect, inertia effect, and inlet end effect was established, and the relation between the friction coefficient of solid-oil-water three-phase contact line and the fluid viscosity in the interface zone was derived. In combination with the capillary bundle model and the lognormal distribution theory, the imbibition model of tight core was obtained and key parameters affecting imbibition dynamics were analyzed. The study shows that in the process of nanopore imbibition, the dynamic contact angle effect has the most significant impact on the imbibition, followed by nanoconfinement effect(multilayer sticking effect and slippage effect), and the inertia effect and inlet end effect have the least impact;in the initial stage of imbibition, the effect of inertial force decreases, and the effect of contact line friction increases, so the dynamic contact angle gradually increases from the initial equilibrium contact angle to the maximum and then remains basically stable;in the later stage of imbibition,the effect of contact line friction decreases, and the contact angle gradually decreases from the maximum dynamic contact angle and approaches the initial equilibrium contact angle;as the pore radius decreases, the dynamic contact angle effect increases in the initial stage of imbibition and decreases in the later stage of imbibition;as the oil-water interfacial tension increases, the imbibition power increases, and the dynamic contact angle effect increases;there is a critical value for the influence of interfacial tension on the imbibition dynamics. In improving oil recovery by imbibition in tight oil reservoir, interfacial tension too low cannot achieve good imbibition effect, and the best interfacial tension needs to be obtained through optimization.
基金financially supported by the National Basic Research Program of China (973 Program) Granted No. 2015CB250903the National Natural Science Foundation of China Granted No. 51490652The Chongqing Institute of Geology and Mineral Resources supported this field work
文摘Spontaneous imbibition of water-based frac- turing fluids into the shale matrix is considered to be the main mechanism responsible for the high volume of water loss during the flowback period. Understanding the matrix imbibition capacity and rate helps to determine the frac- turing fluid volume, optimize the flowback design, and to analyze the influences on the production of shale gas. Imbibition experiments were conducted on shale samples from the Sichuan Basin, and some tight sandstone samples from the Ordos Basin. Tight volcanic samples from the Songliao Basin were also investigated for comparison. The effects of porosity, clay minerals, surfactants, and KC1 solutions on the matrix imbibition capacity and rate were systematically investigated. The results show that the imbibition characteristic of tight rocks can be characterized by the imbibition curve shape, the imbibition capacity, the imbibition rate, and the diffusion rate. The driving forces of water imbibition are the capillary pressure and the clay absorption force. For the tight rocks with low clay contents, the imbibition capacity and rate are positively correlated with the porosity. For tight rocks with high clay content, the type and content of clay minerals are the most impor- tant factors affecting the imbibition capacity. The imbibed water volume normalized by the porosity increases with an increasing total clay content. Smectite and illite/smectite tend to greatly enhance the water imbibition capacity. Furthermore, clay-rich tight rocks can imbibe a volume of water greater than their measured pore volume. The aver- age ratio of the imbibed water volume to the pore volume is approximately 1.1 in the Niutitang shale, 1.9 in the Lujiaping shale, 2.8 in the Longmaxi shale, and 4.0 in the Yingcheng volcanic rock, and this ratio can be regarded as a parameter that indicates the influence of clay. In addition, surfactants can change the imbibition capacity due to alteration of the capillary pressure and wettability. A 10 wt% KC1 solution can inhibit clay absorption to reduce the imbibition capacity.
基金supported by the Natural Science Foundation of China (Grant No. 51574257)National 973 Project (No. 2015CB250900)
文摘Hydraulic fracturing technology can significantly increase oil production from tight oil formations, but performance data show that production declines rapidly. In the long term, it is necessary to increase the development efficiency of block matrix, surfactant-aided imbibition is a potential way. The current work aimed to explain comprehensively how surfactants can enhance the imbibition rate. Laboratory experiments were performed to investigate the effects of wettability, interfacial tension(IFT), and relative permeability as the key parameters underlying surfactant solution imbibition. Two different types of surfactants, sodium dodecyl sulfate and polyethylene glycol octylphenol ether, at varied concentrations were tested on reservoir rocks. Experimental results showed that the oil recovery rate increased with increased wettability alteration and IFT and decreased residual oil saturation. A mechanistic simulator developed in previous studies was used to perform parametric analysis after successful laboratory-scale validation. Results were proven by parametric studies. This study,which examined the mechanism and factors influencing surfactant solution imbibition, can improve understanding of surfactant-aided imbibition and surfactant screening.
基金support provided through a NSERC Discovery Grant(No:RES0011227)to T.Babadaglia NSERC Discovery Grant(No:NSERC RGPIN 05394)to H.Li+3 种基金financial supports provided by National Natural Science Foundation of China(No:51874240)National Science and Technology Major Project(No:2016ZX05047003-004)the Key Laboratory Fund of Education Department of Shaanxi Province(No:15JS086)Ph.D.Scholarship from the China Scholarship Council(CSC)(201806450029)for the financial support.
文摘Tight sands are abundant in nanopores leading to a high capillary pressure and normally a low fluid injectivity.As such,spontaneous imbibition might be an effective mechanism for improving oil recovery from tight sands after fracturing.The chemical agents added to the injected water can alter the interfacial properties,which could help further enhance the oil recovery by spontaneous imbibition.This study explores the possibility of using novel chemicals to enhance oil recovery from tight sands via spontaneous imbibition.We experimentally examine the effects of more than ten different chemical agents on spontaneous imbibition,including a cationic surfactant(C12 TAB),two anionic surfactants(0242 and 0342),an ionic liquid(BMMIM BF4),a high pH solution(NaBO2),and a series of house-made deep eutectic solvents(DES3-7,9,11,and 14).The interfacial tensions(IFT)between oil phase and some chemical solutions are also determined.Experimental results indicate that both the ionic liquid and cationic surfactant used in this study are detrimental to spontaneous imbibition and decrease the oil recovery from tight sands,even though cationic surfactant significantly decreases the oil-water IFT while ionic liquid does not.The high pH NaBO2 solution does not demonstrate significant effect on oil recovery improvement and IFT reduction.The anionic surfactants(O242 and O342)are effective in enhancing oil recovery from tight sands through oil-water IFT reduction and emulsification effects.The DESs drive the rock surface to be more water-wet,and a specific formulation(DES9)leads to much improvement on oil recovery under counter-current imbibition condition.This preliminary study would provide some knowledge about how to optimize the selection of chemicals for improving oil recovery from tight reservoirs.
基金funded by the National Natural Science Foundation of China(52274056,51974348)。
文摘The spontaneous imbibition(SI)process in shale oil reservoirs is not only infuenced by capillary force,but also by the osmotic pressure between the fracturing fuid and formation water in the nanopores media.In this study,experimental methods are used to investigate the mechanisms of osmosis in the SI,taking into account the presence of initial formation water in shale oil reservoirs.To investigate the efect of osmosis,SI experiments were performed on the fne-grained felsic shale of the Qikou sag of Dagang oilfeld.Low-feld NMR testers and high-precision electronic balances are utilized for the measuring of oil–water migration.The results show that,when Sw≠0,high-salinity fuid SI can be divided into four stages:initial imbibition stage,drainage stage,secondary imbibition stage and stationary stage;when Sw=0,there is no drainage stage of high-salinity fuid SI;when Sw≠0 or Sw=0,low-salinity fuid SI can be called the“osmosis-enhanced SI”;and we have found that“newly formed pores or microfractures”as well as reducing salinity can promote SI.This article presents a systematic study of SI of shale oil reservoirs under the infuence of osmosis,which provide useful information for reservoir numerical simulation and development program design.
基金financial support from National Iranian South Oil Company(NISOC)
文摘Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To achieve appropriate ultimate oil recovery in these reservoirs,a water-based enhanced oil recovery method must be capable of altering the wettability of matrix blocks.Previous studies showed that carbonated water can alter wettability of carbonate oil-wet rocks toward less oil-wet or neutral wettability conditions,but the degree of modification is not high enough to allow water to imbibe spontaneously into the matrix blocks at an effective rate.In this study,we manipulated carbonated brine chemistry to enhance its wettability alteration features and hence to improve water imbibition rate and ultimate oil recovery upon spontaneous imbibition in dolomite rocks.First,the contact angle and interfacial tension(IFT)of brine/crude oil systems were measured for several synthetic brine samples with different compositions.Thereafter,two solutions with a significant difference in WAI(wettability alteration index)but approximately equal brine/oil IFT were chosen for spontaneous imbibition experiments.In the next step,spontaneous imbibition experiments at ambient and high pressures were conducted to evaluate the ability of carbonated smart water in enhancing the spontaneous imbibition rate and ultimate oil recovery in dolomite rocks.Experimental results showed that an appropriate adjustment of the imbibition brine(i.e.,carbonated smart water)chemistry improves imbibition rate of carbonated water in oil-wet dolomite rocks as well as the ultimate oil recovery.
基金the National Iranian South Oil Company (NISOC) for generously funding the project
文摘An experimental study was performed to investigate the impact of low salinity water on wettability alteration in carbonate core samples from southern Iranian reservoirs by spontaneous imbibition. In this paper, the effect of temperature, salinity,permeability and connate water were investigated by comparing the produced hydrocarbon curves. Contact angle measurements were taken to confirm the alteration of surface wettability of porous media. Oil recovery was enhanced by increasing the dilution ratio of sea water, and there existed an optimum dilution ratio at which the highest oil recovery was achieved. In addition, temperature had a very significant impact on oil recovery from carbonate rocks. Furthermore, oil recovery from a spontaneous imbibition process was directly proportional to the permeability of the core samples. The presence of connate water saturation inside the porous media facilitated oil production significantly. Also, the oil recovery from porous media was highly dependent on ion repulsion/attraction activity of the rock surface which directly impacts on the wettability conditions. Finally, the highest ion attraction percentage was measured for sodium while there was no significant change in pH for all experiments.
基金This work was supported by the National Natural Science Foundation of China(No.51874320).
文摘Spontaneous imbibition is an important phenomenon in tight reservoirs.The existence of a large number of fractures and micro-nano pores is the key factor affecting the spontaneous imbibition of tight reservoirs.In this study,based on high-pressure mercury injection and nuclear magnetic resonance experiments,the pore distribution of tight sandstone is described.The influence of fractures,core porosity and permeability,and surfactants on the spontaneous imbibition of tight sandstone are studied by physical fracturing,interfacial tension test,wettability test and imbibition experiments.The results show that:the pore radius of tight sandstone is concentrated in 0.01-1 mm.Fractures can effectively reduce the oil drop adsorption on the core surface,enhancing the imbibition recovery of the tight sandstone with an increase of about 10%.As the number of fractures increases,the number of oil droplets adsorbed on the core surface decrease and the imbibition rate increases.The imbibition recovery increases with the increase in pore connectivity,while the imbibition rate increases with the increases in core porosity and permeability.The surfactant can improve the core water wettability and reduce the oilwater interfacial tension,reducing the adsorption of oil droplets on the core surface,and improving the core imbibition recovery with an increase of about 15%.In a word,the existence of fractures and surfactants can enhance the pore connectivity of the reservoir,reduce the adsorption of oil droplets on the core surface,and improve the imbibition rate and recovery rate of the tight oil reservoir.
基金supported by the National Key Research and Development Plan (Grant No. 2018YFD0100901)the Guangdong Province Key Research and Development Program (Grant No. 2018B020202012)+1 种基金the Guangdong Province Key Laboratory of Plant Molecular Breeding (Grant No. GPKLPMB201903)the Major Scientific Research Projects of General Colleges and Universities of Guangdong Province (Grant No. 2017KTSCX024)
文摘A number of internal signals are required for seed germination.However,the precise signalling responses in the initial imbibition of seed germination are not yet fully understood in rice.In this study,the RNA sequencing(RNA-Seq)approach was conducted in 8 h imbibed seeds to understand the signalling responses in the initial imbibition of rice seed germination.A total of 563 differentially expressed genes(DEGs)with at least 4-fold change were identified in 8 h imbibed seeds compared to dry seeds.MapMan analysis revealed that the majority of signalling response-related DEGs were hormone-and transcription factor-related genes,in which the largest number of DEGs belong to the AP2-domain-containing regulators,and their expressions were significantly induced in the initial imbibition of seed germination in rice.Moreover,at least five AP2-domain-containing transcription factor OsDREBs were identified in the initial imbibition of rice seed germination,and the expressions of 251 DEGs were putatively regulated by OsDREBs through the dehydration-responsive element(DRE)cis-element assay.It suggested that the OsDREBs might play important roles in the regulation of initial seed imbibition in rice.The identified genes provide a valuable resource to study the signalling regulation of seed germination in the future.
基金financially supported by the National Natural Science Foundation of China(Grant No.52004317,42090024)the Natural Science Foundation of Shandong Province of China(No.ZR2020ME091)+1 种基金the Fundamental Research Funds for the Central Universities(20CX06016A)the National Science and Technology Major Project(2017ZX05049-004)
文摘Shale oil formations contain both inorganic and organic media.The organic matter holds both free oil in the pores and dissolved oil within the kerogen molecules.The free oil flow in organic pores and the dissolved oil diffusion in kerogen molecules are coupled together.The molecular flow of free n-alkanes is an important process of shale oil accumulation and production.To study the dynamics of imbibition process of n-alkane molecules into kerogen slits,molecular dynamics(MD)simulations are conducted.Effects of slit width,temperature,and n-alkane types on the penetration speed,dynamic contact angle,and molecular conformations were analyzed.Results showed that molecular transportation of n-alkanes is dominated by molecular structure and molecular motion at this scale.The space-confinement conformational changes of molecules slow down the filling speeds in the narrow slits.The n-alkane molecules with long carbon chains require more time to undergo conformational changes.The high content of short-chain alkanes and high temperature facilitate the flow of alkane mixtures in kerogen slits.Results obtained from this study are useful for understanding the underlying nanoscale flow mechanism in shale formations.