The Pabdeh Formation represents organic matter enrichment in some oil fields,which can be considered a source rock.This study is based on the Rock–Eval,Iatroscan,and electron microscopy imaging results before and aft...The Pabdeh Formation represents organic matter enrichment in some oil fields,which can be considered a source rock.This study is based on the Rock–Eval,Iatroscan,and electron microscopy imaging results before and after heating the samples.We discovered this immature shale that undergoes burial and diagenesis,in which organic matter is converted into hydro-carbons.Primary migration is the process that transports hydrocarbons in the source rock.We investigated this phenomenon by developing a model that simulates hydrocarbon generation and fluid pressure during kerogen-to-hydrocarbon conversion.Microfractures initially formed at the tip/edge of kerogen and were filled with hydrocarbons,but as catagenesis progressed,the pressure caused by the volume increase of kerogen decreased due to hydrocarbon release.The transformation of solid kerogen into low-density bitumen/oil increased the pressure,leading to the development of damage zones in the source rock.The Pabdeh Formation’s small porethroats hindered effective expulsion,causing an increase in pore fluid pressure inside the initial microfractures.The stress accumulated due to hydrocarbon production,reaching the rock’s fracture strength,further contributed to damage zone development.During the expansion process,microfractures preferentially grew in low-strength pathways such as lithology changes,laminae boundaries,and pre-existing microfractures.When the porous pressure created by each kerogen overlapped,individual microfractures interconnected,forming a network of microfractures within the source rock.This research sheds light on the complex interplay between temperature,hydrocarbon generation,and the development of expulsion fractures in the Pabdeh Formation,providing valuable insights for understanding and optimizing hydrocarbon extraction in similar geological settings.展开更多
Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiment...Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiments and molecular dynamics numerical simulations were conducted to investigate the effects of changes in shale oil composition on macroscopic fluidity.The concept of“component flow”for shale oil was proposed,and the formation mechanism and conditions of component flow were discussed.The research reveals findings in four aspects.First,a miscible state of light,medium and heavy hydrocarbons form within micropores/nanopores of underground shale according to similarity and intermiscibility principles,which make components with poor fluidity suspended as molecular aggregates in light and medium hydrocarbon solvents,such as heavy hydrocarbons,thereby decreasing shale oil viscosity and enhancing fluidity and outflows.Second,small-molecule aromatic hydrocarbons act as carriers for component flow,and the higher the content of gaseous and light hydrocarbons,the more conducive it is to inhibit the formation of larger aggregates of heavy components such as resin and asphalt,thus increasing their plastic deformation ability and bringing about better component flow efficiency.Third,higher formation temperatures reduce the viscosity of heavy hydrocarbon components,such as wax,thereby improving their fluidity.Fourth,preservation conditions,formation energy,and production system play important roles in controlling the content of light hydrocarbon components,outflow rate,and forming stable“component flow”,which are crucial factors for the optimal compatibility and maximum flow rate of multi-component hydrocarbons in shale oil.The component flow of underground shale oil is significant for improving single-well production and the cumulative ultimate recovery of shale oil.展开更多
Consequences of decommissioning oil fields on artisanal fishing activities are still little known in the literature. This paper is intended to shed some light on a process of dismantling and sinking of oil and gas str...Consequences of decommissioning oil fields on artisanal fishing activities are still little known in the literature. This paper is intended to shed some light on a process of dismantling and sinking of oil and gas structures in shallow waters, with severe disturbing impacts on low income artisanal fishing activities. From a socio-economic perspective, the relationship of oil industry with local communities is described, with the main perceived problems pointed out in local fishermen leadership perspective. The notions of "damages" and "mitigation" used by the oil industry are discussed in connection to the expansion and dismantling of oil installations during the past 20 yrs. A comparative view of oil fields decommissioning in Europe and Brazil during the late 1990s suggests the need to review transparency and social commitment standards which have been far less prominent in this Brazilian case. The authors believe that the Brazilian oil industry has acquired a social and environmental debt towards the whole society, as far as it has been unable to establish a clear and effective process for decommissioning their oil installations within the artisanal fishing areas of the Todosos Santos Bay. Furthermore, the discussion of fair and specific compensations has been avoided, which otherwise would be instrumental to regain local economic conditions found among fishermen just few decades ago.展开更多
Great quantities of light oil and gas are produced from deep buried hill reservoirs at depths of 5,641 m to 6,027 m and 190 ℃ to 201 ℃ in the Niudong-1 Well, representing the deepest and hottest commercial hydrocarb...Great quantities of light oil and gas are produced from deep buried hill reservoirs at depths of 5,641 m to 6,027 m and 190 ℃ to 201 ℃ in the Niudong-1 Well, representing the deepest and hottest commercial hydrocarbons discovered in the Bohai Bay Basin in eastern China. This discovery suggests favorable exploration prospects for the deep parts of the basin. However, the discovery raises questions regarding the genesis and accumulation of hydrocarbons in deep reservoirs. Based on the geochemical features of the hydrocarbons and characteristics of the source rocks as well as thermal simulation experiments of hydrocarbon generation, we conclude that the oil and gas were generated from the highly mature Sha-4 Member (Es4) source rocks instead of thermal cracking of crude oils in earlier accumulations. The source kitchen with abnormal pressures and karsted carbonate reservoirs control the formation of high-maturity hydrocarbon accumulations in the buried hills (i.e., Niudong-1) in conjunction with several structural-lithologic traps in the ES4 reservoirs since the deposition of the upper Minghuazhen Formation. This means the oil and gas exploration potential in the deep parts of the Baxian Depression is probably high.展开更多
Maturity of Jatropha fruits has influence on oil yield, chemical composition and physicochemical properties of derived biodiesel. Oil yield was determined using soxhlet extraction while biodiesel was prepared through ...Maturity of Jatropha fruits has influence on oil yield, chemical composition and physicochemical properties of derived biodiesel. Oil yield was determined using soxhlet extraction while biodiesel was prepared through the process of transesterification. Fatty acid profile was determined according to test method EN 14103 using Agilent Technologies GC System 7890. The calorific value of biodiesel was determined using Oxygen Bomb Calorimeter, IKA C200 according to test method ASTM D5865. Results showed that Yellow Jatropha fruit seeds have the highest oil yield and energy content, coupled with the best mix of fatty acid methyl esters.展开更多
Oils in Jinghu sag are abundant with high content of polar compounds and have a low ratio of saturate to aromatic hydrocarbons and a high ratio of resin to asphaltene. The gross composition of oils in the Jinghu sag s...Oils in Jinghu sag are abundant with high content of polar compounds and have a low ratio of saturate to aromatic hydrocarbons and a high ratio of resin to asphaltene. The gross composition of oils in the Jinghu sag suggests typical immature to low mature characteristics. Some compounds with low thermal stability were identified. Light hydrocarbons, a carbon preference index, an odd even index, n-alkane and hopane maturity parameters show mature features and little differences in the maturity level among oils. Sterane isomerization parameters indicate an immature to low mature status of oil. Transfer of the sedimentary center during sedimentation has led to different thermal histories among subsags and thus generated oils with different maturities. On the basis of source analyses, four migration and accumulation patterns with different maturity can be classified. Combined with available information on mergers of source, reservoir and long distance oil lateral migration, mixing conditions were present in the Jinghu sag. Experimental results indicate that maturity variations are caused by mixtures of hydrocarbons with different maturity.展开更多
The oleanane parameter, i.e., OP (oleananes/(oleananes+C30hopanes)) in the two sedimentary columns of the Beibuwan Basin, South China Sea, can be used to delimit the top of oil generation window, with Ro (/%) o...The oleanane parameter, i.e., OP (oleananes/(oleananes+C30hopanes)) in the two sedimentary columns of the Beibuwan Basin, South China Sea, can be used to delimit the top of oil generation window, with Ro (/%) of 0.53 in Well M1 and 0.55 in Wells H1/Hd1/Hd2, respectively. Comparing with vitrinite reflectance (Ro/%), the OP features a dynamic range and can indicate the oil generation window more precisely. By using OP and other geochemical indices, the oil-source correlation is also conducted. It suggests that the oils in wells M1 and M2 are derived from the source rocks in situ. The mudstone in Huachang uplift is not the main source rocks for oils in this area, The OP is also a useful oil-source correlation parameter in some Tertiary lacustrine basins.展开更多
Based on the comparison of basic geological conditions and enrichment characteristics of shale oil plays, the heterogeneity of source and reservoir conditions and differential enrichment of medium-high maturity contin...Based on the comparison of basic geological conditions and enrichment characteristics of shale oil plays, the heterogeneity of source and reservoir conditions and differential enrichment of medium-high maturity continental shale oil plays in China have been confirmed.(1) Compared with the homogeneous geological settings and wide distribution of marine shale oil strata in North America, the continental medium and high maturity shale oil plays in China are significantly different in geological conditions generally;continental multi-cyclic tectonic evolution forms multiple types of lake basins in multi-stages, providing sites for large-scale development of continental shale oil, and giving rise to large scale high-quality source rocks, multiple types of reservoirs, and diverse source-reservoir combinations with significant heterogeneity.(2) The differences in sedimentary water environments lead to the heterogeneity in lithology, lithofacies, and organic material types of source rocks;the differences in material source supply and sedimentary facies belt result in reservoirs of different lithologies, including argillaceous and transition rocks, and tight siltstone, and complex source-reservoir combination types.(3) The heterogeneity of the source rock controls the differentiation of hydrocarbon generation and expulsion, the diverse reservoir types make reservoir performance different and the source-reservoir configurations complex, and these two factors ultimately make the shale oil enrichment patterns different. Among them, the hydrocarbon generation and expulsion capacity of high-quality source rocks affect the degree of shale oil enrichment. Freshwater hydrocarbon source rocks with TOC larger than 2.5% and saline hydrocarbon source rocks with TOC of 2% to 10% have a high content of retained hydrocarbons and are favorable.(4) High-abundance organic shale is the basis for the enrichment of shale oil inside the source. In addition to being retained in shale, liquid hydrocarbons migrate along laminae, diagenetic fractures, and thin sandy layers, and then accumulate in laminae of argillaceous siltstone, siltstone, and argillaceous dolomite, and dolomitic siltstone suites, etc. with low organic matter abundance in the shale strata, resulting in differences in enrichment pattern.展开更多
Thermal maturation in the shale oil/gas system is inherently complex due to the competitive interplays between hydrocarbon generation and retention processes.To study hydrocarbon generation characteristics from shales...Thermal maturation in the shale oil/gas system is inherently complex due to the competitive interplays between hydrocarbon generation and retention processes.To study hydrocarbon generation characteristics from shales within different stages of thermal maturation under the influence of retained oil,we performed Micro-Scale Sealed Vessels(MSSV)pyrolysis on a set of artificially matured lacustrine shale s amples from the Shahejie Formation in the Dongpu Depression in Bohai B ay Basin,China.Experimental results show that hydrocarbon yields of shale samples with or without retained oil at various thermal maturities follow different evolution paths.Heavy components(C15+)in samples crack at high temperatures and generally follow a sequence,where they first transform into C6-14 then to C2-5 and C1.Methane accounts for most of the gaseous products at high temperatures in all samples,with different origins.The cracking of C2-5 is the main methane-generating process in samples with retained oil,whereas the source of methane in samples without retained oil is kerogen.In the studied shales,retained oils at early-mature stage retard the transformation of liquid to gaseous hydrocarbon and prompt the cracking of C2-5 to C1 to some extent.TSR reaction related to gypsum in the studied samples is the primary reason that can explain the loss of hydrocarbon yields,especially at high temperatures.In addition,transformation of volatile hydrocarbons to gas and coke also accounts for the loss of generated hydrocarbon,as a secondary factor.展开更多
Successful breakthroughs have been made in shale oil exploration in several lacustrine basins in China,indicating a promising future for shale oil exploration and production.Current exploration results have revealed t...Successful breakthroughs have been made in shale oil exploration in several lacustrine basins in China,indicating a promising future for shale oil exploration and production.Current exploration results have revealed the following major conditions of lacustrine shale oil accumulation:(1)stable and widely distributed shale with a high organic abundance and appropriate thermal maturity acts as a fundamental basis for shale oil retention.This shale exhibits several critical parameters,such as total organic carbon content greater than 2%,with optimal values ranging from 3% to 4%,kerogen Ⅰ and Ⅱ_(1) as the dominant organic matter types,and vitrinite reflectance(R_(o))values greater than 0.9%(0.8% for brackish water environments).(2)Various types of reservoirs exhibiting brittleness and a certain volume of micro-nanoscale pores are critical conditions for shale oil accumulation,and these reservoirs have porosities greater than 3% to 6%.Moreover,when diagenesis is incipient,pure shales are not favorable for medium-to-high maturity shale oil enrichment,whereas tight sandstone and hybrid rocks with clay content less than 20% are favorable;however,for medium-to-late-stage diagenesis,pure shales with a clay content of 40% are favorable.(3)The retention of a large amount of high-quality hydrocarbons is the factor that best guarantees shale oil accumulation with good mobility.Free hydrocarbon content exceeding a threshold value of 2 mg/g is generally required,and the optimum value is 4 mg/g to 6 mg/g.Moreover,a gas-oil ratio exceeding a threshold value of 80 m^(3)/m^(3) is required,with the optimal value ranging from 150 m^(3)/m^(3) to 300 m^(3)/m^(3).(4)High-quality roof and floor sealing conditions are essential for the shale oil enrichment interval to maintain the overpressure and retain a sufficient amount of hydrocarbons with good quality.Lacustrine shale oil distributions exhibit the following characteristics:(1)major enrichment areas of shale oil are located in semi-deep to deep lacustrine depositional areas with external materials,such as volcanic ash fallout,hydrothermal solutions,and radioactive substances with catalytic action,as inputs;(2)intervals with“four high values and one preservation condition”govern the distribution of shale oil enrichment intervals;and(3)favorable assemblages of lithofacies/lithologies determine the distribution of enrichment area.According to preliminary estimates,China has 131×10^(8) to 163×10^(8) t of total shale oil resources with medium-to-high thermal maturity,among which 67×10^(8) to 84×10^(8) t is commercial.These resources are primarily located in the Chang 7^(1+2) interval in the Ordos Basin,Qing 1+2 members in Gulong sag in the Songliao Basin,Kongdian and Shahejie formations of Cangdong sag,Qikou sag and the Jiyang depression in the Bohai Bay Basin,and Lucaogou Formation in the Junggar Basin.展开更多
The oil palm (Elaeis guineensis Jacq.) is a diploid perennial plant of the Arecaceae family. It is the most important plant cultivated for oil production. To ensure this production, certain optimal conditions are requ...The oil palm (Elaeis guineensis Jacq.) is a diploid perennial plant of the Arecaceae family. It is the most important plant cultivated for oil production. To ensure this production, certain optimal conditions are required: temperature, sunshine, rainfall, etc. The oil palm ensures its survival through the fruits borne on bunches located at the axis of the 17th to 20th leaves from the central stem. From pollination to the maturity of a bunch it takes about 4.5 to 6 months. Several events occur during this period: seed enlargement, weight increase, colour change, etc., but also important physiological changes: synthesis of some pigments (anthocyanin), increase in oil content correlated with the decrease in water content, etc. All of these constitute factors that can provide a better understanding of the biology of the seed. The aim of this work was to review some of the important parameters involved in the development and maturation of oil palm fruit bunches. These factors are classified into physiological, biochemical as well as environmental. The physiological parameters are color, appearance of embryo, seed weight and fruit detachment from bunches;Biochemical parameters include water content, oil content, carbohydrate, protein, mineral contents and lipase activity while temperature is the main environmental factor that affects fruit maturation. Thorough research has not yet been done at the different stages of maturation and ripening, thus a deep look into this may open up new avenues for research on early germinated oil palm seed production prior to seed dormancy.展开更多
This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the probl...This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.展开更多
Fluctuations in oil prices adversely affect decision making situations in which performance forecasting must be combined with realistic price forecasts.In periods of significant price drops,companies may consider exte...Fluctuations in oil prices adversely affect decision making situations in which performance forecasting must be combined with realistic price forecasts.In periods of significant price drops,companies may consider extended duration of well shut-ins(i.e.temporarily stopping oil production)for economic reasons.For example,prices during the early days of the Covid-19 pandemic forced operators to consider shutting in all or some of their active wells.In the case of partial shut-in,selection of candidate wells may evolve as a challenging decision problem considering the uncertainties involved.In this study,a mature oil field with a long(50+years)production history with 170+wells is considered.Reservoirs with similar conditions face many challenges related to economic sustainability such as frequent maintenance requirements and low production rates.We aimed to solve this decision-making problem through unsupervised machine learning.Average reservoir characteristics at well locations,well production performance statistics and well locations are used as potential features that could characterize similarities and differences among wells.While reservoir characteristics are measured at well locations for the purpose of describing the subsurface reservoir,well performance consists of volumetric rates and pressures,which are frequently measured during oil production.After a multivariate data analysis that explored correlations among parameters,clustering algorithms were used to identify groups of wells that are similar with respect to aforementioned features.Using the field’s reservoir simulation model,scenarios of shutting in different groups of wells were simulated.Forecasted reservoir performance for three years was used for economic evaluation that assumed an oil price drop to$30/bbl for 6,12 or 18 months.Results of economic analysis were analyzed to identify which group(s)of wells should have been shut-in by also considering the sensitivity to different price levels.It was observed that wells can be characterized in the 3-cluster case as low,medium and high performance wells.Analyzing the forecasting scenarios showed that shutting in all or high-and medium-performance wells altogether results in better economic outcomes.The results were most sensitive to the number of active wells and the oil price during the high-price period.This study demonstrated the effectiveness of unsupervised machine learning in well classification for operational decision making purposes.Operating companies may use this approach for improved decision making to select wells for extended shut-in during low oil-price periods.This approach would lead to cost savings especially in mature fields with low-profit margins.展开更多
The origin of the unusually high dibenzothiophene (DBT) concentrations in Lower Ordovician oils from the Tazhong Uplift,Tarim Basin was studied by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR...The origin of the unusually high dibenzothiophene (DBT) concentrations in Lower Ordovician oils from the Tazhong Uplift,Tarim Basin was studied by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS).The most abundant sulfur compounds in the oils are S 1 species with doublebond equivalent (DBE) values of 1-19 and 11-48 carbon atoms.The range of the number of carbon atoms in the sulfur compounds detected by the FT-ICR MS (S 1 species with DBE=9) is about ten times larger than that for sulfur compounds detected by GC/MS (DBTs).This suggests that FT-ICR MS is a much better approach than GC/MS for characterization of DBTs in crude oils.The abundance of S 1 species with DBE=1-8 decreased with increasing thermal maturity,while the abundance of S 1 species with DBE=9 (primarily DBTs) increased.Therefore,thermal maturity is an important factor in the formation of oils with high DBT concentrations.Unusually high abundances of S 1 species with low DBE values (1-8),which include sulfide,thiophene and benzothiophene,were observed in several oils,especially the TZ83 (O 1) oil with high or very high thermal maturity.Thermochemical sulfate reduction (TSR) was thought to be the reason for the high abundance of these low DBE compounds in deep reservoirs,and thermochemical sulfate reduction could affect the distribution and composition of DBTs in the oils.According to the results of FT-ICR MS analysis,there are no signs that TSR is occurring or has occurred recently for most of the Lower Ordovician oils.展开更多
Continental shale oil has two types, low-medium maturity and medium-high maturity, and they are different in terms of resource environment, potential, production methods and technologies, and industrial evaluation cri...Continental shale oil has two types, low-medium maturity and medium-high maturity, and they are different in terms of resource environment, potential, production methods and technologies, and industrial evaluation criteria. In addition, continental shale oil is different from the shale oil and tight oil in the United States. Scientific definition of connotations of these resource types is of great significance for promoting the exploration of continental shale oil from "outside source" into "inside source" and making it a strategic replacement resource in the future. The connotations of low-medium maturity and medium-high maturity continental shale oils are made clear in this study. The former refers to the liquid hydrocarbons and multiple organic matter buried in the continental organic-rich shale strata with a burial depth deeper than 300 m and a Ro value less than 1.0%. The latter refers to the liquid hydrocarbons present in organic-rich shale intervals with a burial depth that in the "liquid window" range of the Tissot model and a Ro value greater than 1.0%. The geological characteristics, resource potential and economic evaluation criteria of different types of continental shale oil are systematically summarized. According to evaluation, the recoverable resources of in-situ conversion technology for shale oil with low-medium maturity in China is about(700-900)×10^8 t, and the economic recoverable resources under medium oil price condition($ 60-65/bbl) is(150-200)×10^8 t. Shale oil with low-medium maturity guarantees the occurrence of the continental shale oil revolution. Pilot target areas should be optimized and core technical equipment should be developed according to the key parameters such as the cumulative production scale of well groups, the production scale, the preservation conditions, and the economics of exploitation. The geological resources of medium-high maturity shale oil are about 100×10^8 t, and the recoverable resources can to be determined after the daily production and cumulative production of a single well reach the economic threshold. Continental shale oil and tight oil are different in lithological combinations, facies distribution, and productivity evaluation criteria. The two can be independently distinguished and coexist according to different resource types. The determination of China’s continental shale oil types, resources potentials, and tight oil boundary systems can provide a reference for the upcoming shale oil exploration and development practices and help the development of China’s continental shale oil.展开更多
Based on the current research status of shale oil exploration and development at home and abroad,through field observations,dissection of typical shale oil regions,analysis and testing of organic-rich shale samples,et...Based on the current research status of shale oil exploration and development at home and abroad,through field observations,dissection of typical shale oil regions,analysis and testing of organic-rich shale samples,etc.,we compare the differences in geological and engineering characteristics of shale oil reservoirs in marine and continental basins in China and the United States,put forward several issues worthy of attention in the exploration and development of lacustrine shale oil in typical basins of China,including the concept of tight oil and shale oil,vertical permeability and horizontal permeability,differences between continental and marine shale oil reservoirs,medium-low maturity and medium-high maturity,source-reservoir and source-caprock,geology and engineering,selection criteria of favorable areas and“sweet spots”,basic scientific research and application research.By comparing and analyzing organic-rich shales in the Triassic Yanchang Formation of the Ordos Basin,the Permian Lucaogou Formation in the Jimsar Sag of the Junggar Basin,the Permian Fengcheng Formation in the Mahu Sag,the Cretaceous Qingshankou&Nenjiang Formation in the Songliao Basin and the Paleogene Kongdian&Shahejie Formation in the Bohai Bay Basin,we believe that three key scientific issues must be studied in-depth from shale oil exploration to development in the future:(1)the physical,chemical and biological processes during the deposition of terrestrial fine-grained sediments and the formation mechanism of terrestrial organic-rich shale;(2)the dynamic evolution of diagenesis-hydrocarbon generation-reservoir formation,and the mechanisms of hydrocarbon formation and accumulation;(3)the fracturing mechanisms of terrestrial shale layers in different diagenetic stages and the multi-phase and multi-scale flow mechanism of shale oil in shale layers of different maturities.In addition,we should clarify the main controlling factors of shale oil reservoir characterization,oil-bearing properties,compressibility and fluidity of shale oil with different maturities,establish a lacustrine shale oil enrichment model and the evaluation methodology,to provide effective development methods,and ultimately to establish theoretical foundation and technical support for the large scale economical exploration and development of lacustrine shale oil resources in China.展开更多
Forty-six crude oil samples were selected from the Ordovician in the northwestern part of the Tahe oilfield for detailed molecular geochemical and isotopic analysis, including group compositions, carbonhydrogen isotop...Forty-six crude oil samples were selected from the Ordovician in the northwestern part of the Tahe oilfield for detailed molecular geochemical and isotopic analysis, including group compositions, carbonhydrogen isotopes and gas chroma-tograms of saturated hydrocarbons, as well as the characteristics of terpane, sterane and other biomarkers, indicating that crude oils are of the same origin from different districts in the Tahe oilfield and were derived from the same source kitchen (or oil source formation), i.e., mainly stemming from marine hydrocarbons. Detailed studies of oil physical properties of 25-honpane revealed that such oils have heavy or thick oil qualities due to biodegradation. Comprehensive assessment in terms of five maturity parameters shows that the oils from the Ordovician with Ro values varying from 0.80% to 1.59% are widely distributed in the northwest of the Tahe oilfield.展开更多
Polarized macromolecular compounds in typical lacustrine and marine shale oils collected from the Ordos Basin and Tarim Basin of China were analyzed by FT-ICR-MS. Maturity was taken into consideration by diagenesis ph...Polarized macromolecular compounds in typical lacustrine and marine shale oils collected from the Ordos Basin and Tarim Basin of China were analyzed by FT-ICR-MS. Maturity was taken into consideration by diagenesis physical simulation experiments on shale oils, which had been collected at various temperature and pressure stages. The results showed that similar components existed in non-hydrocarbon and asphaltenes and the main peak compound classes of N1 and O2 were potential parameters for identifying typical marine oil and lacustrine oil in China. Nitrogen compounds/(nitrogen compounds and oxygen compounds), such as N1/(O2+N1), N1/(O3+N1), N1/(N1O1+N1O2) are the maturity indicators, which are related with C-N and C-O bond energy. Differences in molecular components and weights between marine and lacustrine oils are the effective index to identify source maturity and sedimentary environment.展开更多
文摘The Pabdeh Formation represents organic matter enrichment in some oil fields,which can be considered a source rock.This study is based on the Rock–Eval,Iatroscan,and electron microscopy imaging results before and after heating the samples.We discovered this immature shale that undergoes burial and diagenesis,in which organic matter is converted into hydro-carbons.Primary migration is the process that transports hydrocarbons in the source rock.We investigated this phenomenon by developing a model that simulates hydrocarbon generation and fluid pressure during kerogen-to-hydrocarbon conversion.Microfractures initially formed at the tip/edge of kerogen and were filled with hydrocarbons,but as catagenesis progressed,the pressure caused by the volume increase of kerogen decreased due to hydrocarbon release.The transformation of solid kerogen into low-density bitumen/oil increased the pressure,leading to the development of damage zones in the source rock.The Pabdeh Formation’s small porethroats hindered effective expulsion,causing an increase in pore fluid pressure inside the initial microfractures.The stress accumulated due to hydrocarbon production,reaching the rock’s fracture strength,further contributed to damage zone development.During the expansion process,microfractures preferentially grew in low-strength pathways such as lithology changes,laminae boundaries,and pre-existing microfractures.When the porous pressure created by each kerogen overlapped,individual microfractures interconnected,forming a network of microfractures within the source rock.This research sheds light on the complex interplay between temperature,hydrocarbon generation,and the development of expulsion fractures in the Pabdeh Formation,providing valuable insights for understanding and optimizing hydrocarbon extraction in similar geological settings.
基金Supported by the National Natural Science Foundation of China(U22B6004)Scientific Research and Technological Development Project of RIPED(2022yjcq03)Technology Research Project of PetroChina Changqing Oilfield Company(KJZX2023-01)。
文摘Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiments and molecular dynamics numerical simulations were conducted to investigate the effects of changes in shale oil composition on macroscopic fluidity.The concept of“component flow”for shale oil was proposed,and the formation mechanism and conditions of component flow were discussed.The research reveals findings in four aspects.First,a miscible state of light,medium and heavy hydrocarbons form within micropores/nanopores of underground shale according to similarity and intermiscibility principles,which make components with poor fluidity suspended as molecular aggregates in light and medium hydrocarbon solvents,such as heavy hydrocarbons,thereby decreasing shale oil viscosity and enhancing fluidity and outflows.Second,small-molecule aromatic hydrocarbons act as carriers for component flow,and the higher the content of gaseous and light hydrocarbons,the more conducive it is to inhibit the formation of larger aggregates of heavy components such as resin and asphalt,thus increasing their plastic deformation ability and bringing about better component flow efficiency.Third,higher formation temperatures reduce the viscosity of heavy hydrocarbon components,such as wax,thereby improving their fluidity.Fourth,preservation conditions,formation energy,and production system play important roles in controlling the content of light hydrocarbon components,outflow rate,and forming stable“component flow”,which are crucial factors for the optimal compatibility and maximum flow rate of multi-component hydrocarbons in shale oil.The component flow of underground shale oil is significant for improving single-well production and the cumulative ultimate recovery of shale oil.
文摘Consequences of decommissioning oil fields on artisanal fishing activities are still little known in the literature. This paper is intended to shed some light on a process of dismantling and sinking of oil and gas structures in shallow waters, with severe disturbing impacts on low income artisanal fishing activities. From a socio-economic perspective, the relationship of oil industry with local communities is described, with the main perceived problems pointed out in local fishermen leadership perspective. The notions of "damages" and "mitigation" used by the oil industry are discussed in connection to the expansion and dismantling of oil installations during the past 20 yrs. A comparative view of oil fields decommissioning in Europe and Brazil during the late 1990s suggests the need to review transparency and social commitment standards which have been far less prominent in this Brazilian case. The authors believe that the Brazilian oil industry has acquired a social and environmental debt towards the whole society, as far as it has been unable to establish a clear and effective process for decommissioning their oil installations within the artisanal fishing areas of the Todosos Santos Bay. Furthermore, the discussion of fair and specific compensations has been avoided, which otherwise would be instrumental to regain local economic conditions found among fishermen just few decades ago.
文摘Great quantities of light oil and gas are produced from deep buried hill reservoirs at depths of 5,641 m to 6,027 m and 190 ℃ to 201 ℃ in the Niudong-1 Well, representing the deepest and hottest commercial hydrocarbons discovered in the Bohai Bay Basin in eastern China. This discovery suggests favorable exploration prospects for the deep parts of the basin. However, the discovery raises questions regarding the genesis and accumulation of hydrocarbons in deep reservoirs. Based on the geochemical features of the hydrocarbons and characteristics of the source rocks as well as thermal simulation experiments of hydrocarbon generation, we conclude that the oil and gas were generated from the highly mature Sha-4 Member (Es4) source rocks instead of thermal cracking of crude oils in earlier accumulations. The source kitchen with abnormal pressures and karsted carbonate reservoirs control the formation of high-maturity hydrocarbon accumulations in the buried hills (i.e., Niudong-1) in conjunction with several structural-lithologic traps in the ES4 reservoirs since the deposition of the upper Minghuazhen Formation. This means the oil and gas exploration potential in the deep parts of the Baxian Depression is probably high.
文摘Maturity of Jatropha fruits has influence on oil yield, chemical composition and physicochemical properties of derived biodiesel. Oil yield was determined using soxhlet extraction while biodiesel was prepared through the process of transesterification. Fatty acid profile was determined according to test method EN 14103 using Agilent Technologies GC System 7890. The calorific value of biodiesel was determined using Oxygen Bomb Calorimeter, IKA C200 according to test method ASTM D5865. Results showed that Yellow Jatropha fruit seeds have the highest oil yield and energy content, coupled with the best mix of fatty acid methyl esters.
基金Project 40502013 supported by the National Natural Science Foundation of China
文摘Oils in Jinghu sag are abundant with high content of polar compounds and have a low ratio of saturate to aromatic hydrocarbons and a high ratio of resin to asphaltene. The gross composition of oils in the Jinghu sag suggests typical immature to low mature characteristics. Some compounds with low thermal stability were identified. Light hydrocarbons, a carbon preference index, an odd even index, n-alkane and hopane maturity parameters show mature features and little differences in the maturity level among oils. Sterane isomerization parameters indicate an immature to low mature status of oil. Transfer of the sedimentary center during sedimentation has led to different thermal histories among subsags and thus generated oils with different maturities. On the basis of source analyses, four migration and accumulation patterns with different maturity can be classified. Combined with available information on mergers of source, reservoir and long distance oil lateral migration, mixing conditions were present in the Jinghu sag. Experimental results indicate that maturity variations are caused by mixtures of hydrocarbons with different maturity.
基金supported by the Natural Science Foundation of China(Grant No.40672093)CNPC Innovation Fund(07El001)the ESS-China Hydrocarbon Geosciences Collaboration Project under Natural Resources Canada's International Opportunities Program.
文摘The oleanane parameter, i.e., OP (oleananes/(oleananes+C30hopanes)) in the two sedimentary columns of the Beibuwan Basin, South China Sea, can be used to delimit the top of oil generation window, with Ro (/%) of 0.53 in Well M1 and 0.55 in Wells H1/Hd1/Hd2, respectively. Comparing with vitrinite reflectance (Ro/%), the OP features a dynamic range and can indicate the oil generation window more precisely. By using OP and other geochemical indices, the oil-source correlation is also conducted. It suggests that the oils in wells M1 and M2 are derived from the source rocks in situ. The mudstone in Huachang uplift is not the main source rocks for oils in this area, The OP is also a useful oil-source correlation parameter in some Tertiary lacustrine basins.
基金Supported by the National Natural Science Foundation of China (42072186)China National Oil and Gas Major Project (2016ZX05046-001)PetroChina Scientific Research and Technology Project (2021-DJ2203)。
文摘Based on the comparison of basic geological conditions and enrichment characteristics of shale oil plays, the heterogeneity of source and reservoir conditions and differential enrichment of medium-high maturity continental shale oil plays in China have been confirmed.(1) Compared with the homogeneous geological settings and wide distribution of marine shale oil strata in North America, the continental medium and high maturity shale oil plays in China are significantly different in geological conditions generally;continental multi-cyclic tectonic evolution forms multiple types of lake basins in multi-stages, providing sites for large-scale development of continental shale oil, and giving rise to large scale high-quality source rocks, multiple types of reservoirs, and diverse source-reservoir combinations with significant heterogeneity.(2) The differences in sedimentary water environments lead to the heterogeneity in lithology, lithofacies, and organic material types of source rocks;the differences in material source supply and sedimentary facies belt result in reservoirs of different lithologies, including argillaceous and transition rocks, and tight siltstone, and complex source-reservoir combination types.(3) The heterogeneity of the source rock controls the differentiation of hydrocarbon generation and expulsion, the diverse reservoir types make reservoir performance different and the source-reservoir configurations complex, and these two factors ultimately make the shale oil enrichment patterns different. Among them, the hydrocarbon generation and expulsion capacity of high-quality source rocks affect the degree of shale oil enrichment. Freshwater hydrocarbon source rocks with TOC larger than 2.5% and saline hydrocarbon source rocks with TOC of 2% to 10% have a high content of retained hydrocarbons and are favorable.(4) High-abundance organic shale is the basis for the enrichment of shale oil inside the source. In addition to being retained in shale, liquid hydrocarbons migrate along laminae, diagenetic fractures, and thin sandy layers, and then accumulate in laminae of argillaceous siltstone, siltstone, and argillaceous dolomite, and dolomitic siltstone suites, etc. with low organic matter abundance in the shale strata, resulting in differences in enrichment pattern.
基金funded by National Natural Science Foundation of China(No.41872148)China Major Research and Development Program for Oil and Gas(No.2017ZX05049001)financial supporting from China Scholarship Council and American Association of Petroleum Geologists(Norman H.Foster Memorial Grant)。
文摘Thermal maturation in the shale oil/gas system is inherently complex due to the competitive interplays between hydrocarbon generation and retention processes.To study hydrocarbon generation characteristics from shales within different stages of thermal maturation under the influence of retained oil,we performed Micro-Scale Sealed Vessels(MSSV)pyrolysis on a set of artificially matured lacustrine shale s amples from the Shahejie Formation in the Dongpu Depression in Bohai B ay Basin,China.Experimental results show that hydrocarbon yields of shale samples with or without retained oil at various thermal maturities follow different evolution paths.Heavy components(C15+)in samples crack at high temperatures and generally follow a sequence,where they first transform into C6-14 then to C2-5 and C1.Methane accounts for most of the gaseous products at high temperatures in all samples,with different origins.The cracking of C2-5 is the main methane-generating process in samples with retained oil,whereas the source of methane in samples without retained oil is kerogen.In the studied shales,retained oils at early-mature stage retard the transformation of liquid to gaseous hydrocarbon and prompt the cracking of C2-5 to C1 to some extent.TSR reaction related to gypsum in the studied samples is the primary reason that can explain the loss of hydrocarbon yields,especially at high temperatures.In addition,transformation of volatile hydrocarbons to gas and coke also accounts for the loss of generated hydrocarbon,as a secondary factor.
基金Major Project of National Natural Science Foundation of China(42090020,42090025)Major Project of CNPC(2019E-2601)。
文摘Successful breakthroughs have been made in shale oil exploration in several lacustrine basins in China,indicating a promising future for shale oil exploration and production.Current exploration results have revealed the following major conditions of lacustrine shale oil accumulation:(1)stable and widely distributed shale with a high organic abundance and appropriate thermal maturity acts as a fundamental basis for shale oil retention.This shale exhibits several critical parameters,such as total organic carbon content greater than 2%,with optimal values ranging from 3% to 4%,kerogen Ⅰ and Ⅱ_(1) as the dominant organic matter types,and vitrinite reflectance(R_(o))values greater than 0.9%(0.8% for brackish water environments).(2)Various types of reservoirs exhibiting brittleness and a certain volume of micro-nanoscale pores are critical conditions for shale oil accumulation,and these reservoirs have porosities greater than 3% to 6%.Moreover,when diagenesis is incipient,pure shales are not favorable for medium-to-high maturity shale oil enrichment,whereas tight sandstone and hybrid rocks with clay content less than 20% are favorable;however,for medium-to-late-stage diagenesis,pure shales with a clay content of 40% are favorable.(3)The retention of a large amount of high-quality hydrocarbons is the factor that best guarantees shale oil accumulation with good mobility.Free hydrocarbon content exceeding a threshold value of 2 mg/g is generally required,and the optimum value is 4 mg/g to 6 mg/g.Moreover,a gas-oil ratio exceeding a threshold value of 80 m^(3)/m^(3) is required,with the optimal value ranging from 150 m^(3)/m^(3) to 300 m^(3)/m^(3).(4)High-quality roof and floor sealing conditions are essential for the shale oil enrichment interval to maintain the overpressure and retain a sufficient amount of hydrocarbons with good quality.Lacustrine shale oil distributions exhibit the following characteristics:(1)major enrichment areas of shale oil are located in semi-deep to deep lacustrine depositional areas with external materials,such as volcanic ash fallout,hydrothermal solutions,and radioactive substances with catalytic action,as inputs;(2)intervals with“four high values and one preservation condition”govern the distribution of shale oil enrichment intervals;and(3)favorable assemblages of lithofacies/lithologies determine the distribution of enrichment area.According to preliminary estimates,China has 131×10^(8) to 163×10^(8) t of total shale oil resources with medium-to-high thermal maturity,among which 67×10^(8) to 84×10^(8) t is commercial.These resources are primarily located in the Chang 7^(1+2) interval in the Ordos Basin,Qing 1+2 members in Gulong sag in the Songliao Basin,Kongdian and Shahejie formations of Cangdong sag,Qikou sag and the Jiyang depression in the Bohai Bay Basin,and Lucaogou Formation in the Junggar Basin.
文摘The oil palm (Elaeis guineensis Jacq.) is a diploid perennial plant of the Arecaceae family. It is the most important plant cultivated for oil production. To ensure this production, certain optimal conditions are required: temperature, sunshine, rainfall, etc. The oil palm ensures its survival through the fruits borne on bunches located at the axis of the 17th to 20th leaves from the central stem. From pollination to the maturity of a bunch it takes about 4.5 to 6 months. Several events occur during this period: seed enlargement, weight increase, colour change, etc., but also important physiological changes: synthesis of some pigments (anthocyanin), increase in oil content correlated with the decrease in water content, etc. All of these constitute factors that can provide a better understanding of the biology of the seed. The aim of this work was to review some of the important parameters involved in the development and maturation of oil palm fruit bunches. These factors are classified into physiological, biochemical as well as environmental. The physiological parameters are color, appearance of embryo, seed weight and fruit detachment from bunches;Biochemical parameters include water content, oil content, carbohydrate, protein, mineral contents and lipase activity while temperature is the main environmental factor that affects fruit maturation. Thorough research has not yet been done at the different stages of maturation and ripening, thus a deep look into this may open up new avenues for research on early germinated oil palm seed production prior to seed dormancy.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ04,2023ZZ08)。
文摘This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.
基金support from research grants MGA-2021-42991 and MYL-2022-43726,funded by Istanbul Technical University-Scientific Research Projects,Turkey.Thissupportis gratefully acknowledged.
文摘Fluctuations in oil prices adversely affect decision making situations in which performance forecasting must be combined with realistic price forecasts.In periods of significant price drops,companies may consider extended duration of well shut-ins(i.e.temporarily stopping oil production)for economic reasons.For example,prices during the early days of the Covid-19 pandemic forced operators to consider shutting in all or some of their active wells.In the case of partial shut-in,selection of candidate wells may evolve as a challenging decision problem considering the uncertainties involved.In this study,a mature oil field with a long(50+years)production history with 170+wells is considered.Reservoirs with similar conditions face many challenges related to economic sustainability such as frequent maintenance requirements and low production rates.We aimed to solve this decision-making problem through unsupervised machine learning.Average reservoir characteristics at well locations,well production performance statistics and well locations are used as potential features that could characterize similarities and differences among wells.While reservoir characteristics are measured at well locations for the purpose of describing the subsurface reservoir,well performance consists of volumetric rates and pressures,which are frequently measured during oil production.After a multivariate data analysis that explored correlations among parameters,clustering algorithms were used to identify groups of wells that are similar with respect to aforementioned features.Using the field’s reservoir simulation model,scenarios of shutting in different groups of wells were simulated.Forecasted reservoir performance for three years was used for economic evaluation that assumed an oil price drop to$30/bbl for 6,12 or 18 months.Results of economic analysis were analyzed to identify which group(s)of wells should have been shut-in by also considering the sensitivity to different price levels.It was observed that wells can be characterized in the 3-cluster case as low,medium and high performance wells.Analyzing the forecasting scenarios showed that shutting in all or high-and medium-performance wells altogether results in better economic outcomes.The results were most sensitive to the number of active wells and the oil price during the high-price period.This study demonstrated the effectiveness of unsupervised machine learning in well classification for operational decision making purposes.Operating companies may use this approach for improved decision making to select wells for extended shut-in during low oil-price periods.This approach would lead to cost savings especially in mature fields with low-profit margins.
基金funded by the Natural Science FundingCouncil of China(Grant No.#40973031)the Foundationof State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(No.PRPJC2008-02)Natural Science Research Council of China(China 973 National Key Research and Development Program 2011CB201102)
文摘The origin of the unusually high dibenzothiophene (DBT) concentrations in Lower Ordovician oils from the Tazhong Uplift,Tarim Basin was studied by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS).The most abundant sulfur compounds in the oils are S 1 species with doublebond equivalent (DBE) values of 1-19 and 11-48 carbon atoms.The range of the number of carbon atoms in the sulfur compounds detected by the FT-ICR MS (S 1 species with DBE=9) is about ten times larger than that for sulfur compounds detected by GC/MS (DBTs).This suggests that FT-ICR MS is a much better approach than GC/MS for characterization of DBTs in crude oils.The abundance of S 1 species with DBE=1-8 decreased with increasing thermal maturity,while the abundance of S 1 species with DBE=9 (primarily DBTs) increased.Therefore,thermal maturity is an important factor in the formation of oils with high DBT concentrations.Unusually high abundances of S 1 species with low DBE values (1-8),which include sulfide,thiophene and benzothiophene,were observed in several oils,especially the TZ83 (O 1) oil with high or very high thermal maturity.Thermochemical sulfate reduction (TSR) was thought to be the reason for the high abundance of these low DBE compounds in deep reservoirs,and thermochemical sulfate reduction could affect the distribution and composition of DBTs in the oils.According to the results of FT-ICR MS analysis,there are no signs that TSR is occurring or has occurred recently for most of the Lower Ordovician oils.
基金Funded by National Science and Technology Major Project(2016ZX05046)China National Petroleum Corporation International Cooperation Project(2015D-4810-02).
文摘Continental shale oil has two types, low-medium maturity and medium-high maturity, and they are different in terms of resource environment, potential, production methods and technologies, and industrial evaluation criteria. In addition, continental shale oil is different from the shale oil and tight oil in the United States. Scientific definition of connotations of these resource types is of great significance for promoting the exploration of continental shale oil from "outside source" into "inside source" and making it a strategic replacement resource in the future. The connotations of low-medium maturity and medium-high maturity continental shale oils are made clear in this study. The former refers to the liquid hydrocarbons and multiple organic matter buried in the continental organic-rich shale strata with a burial depth deeper than 300 m and a Ro value less than 1.0%. The latter refers to the liquid hydrocarbons present in organic-rich shale intervals with a burial depth that in the "liquid window" range of the Tissot model and a Ro value greater than 1.0%. The geological characteristics, resource potential and economic evaluation criteria of different types of continental shale oil are systematically summarized. According to evaluation, the recoverable resources of in-situ conversion technology for shale oil with low-medium maturity in China is about(700-900)×10^8 t, and the economic recoverable resources under medium oil price condition($ 60-65/bbl) is(150-200)×10^8 t. Shale oil with low-medium maturity guarantees the occurrence of the continental shale oil revolution. Pilot target areas should be optimized and core technical equipment should be developed according to the key parameters such as the cumulative production scale of well groups, the production scale, the preservation conditions, and the economics of exploitation. The geological resources of medium-high maturity shale oil are about 100×10^8 t, and the recoverable resources can to be determined after the daily production and cumulative production of a single well reach the economic threshold. Continental shale oil and tight oil are different in lithological combinations, facies distribution, and productivity evaluation criteria. The two can be independently distinguished and coexist according to different resource types. The determination of China’s continental shale oil types, resources potentials, and tight oil boundary systems can provide a reference for the upcoming shale oil exploration and development practices and help the development of China’s continental shale oil.
文摘Based on the current research status of shale oil exploration and development at home and abroad,through field observations,dissection of typical shale oil regions,analysis and testing of organic-rich shale samples,etc.,we compare the differences in geological and engineering characteristics of shale oil reservoirs in marine and continental basins in China and the United States,put forward several issues worthy of attention in the exploration and development of lacustrine shale oil in typical basins of China,including the concept of tight oil and shale oil,vertical permeability and horizontal permeability,differences between continental and marine shale oil reservoirs,medium-low maturity and medium-high maturity,source-reservoir and source-caprock,geology and engineering,selection criteria of favorable areas and“sweet spots”,basic scientific research and application research.By comparing and analyzing organic-rich shales in the Triassic Yanchang Formation of the Ordos Basin,the Permian Lucaogou Formation in the Jimsar Sag of the Junggar Basin,the Permian Fengcheng Formation in the Mahu Sag,the Cretaceous Qingshankou&Nenjiang Formation in the Songliao Basin and the Paleogene Kongdian&Shahejie Formation in the Bohai Bay Basin,we believe that three key scientific issues must be studied in-depth from shale oil exploration to development in the future:(1)the physical,chemical and biological processes during the deposition of terrestrial fine-grained sediments and the formation mechanism of terrestrial organic-rich shale;(2)the dynamic evolution of diagenesis-hydrocarbon generation-reservoir formation,and the mechanisms of hydrocarbon formation and accumulation;(3)the fracturing mechanisms of terrestrial shale layers in different diagenetic stages and the multi-phase and multi-scale flow mechanism of shale oil in shale layers of different maturities.In addition,we should clarify the main controlling factors of shale oil reservoir characterization,oil-bearing properties,compressibility and fluidity of shale oil with different maturities,establish a lacustrine shale oil enrichment model and the evaluation methodology,to provide effective development methods,and ultimately to establish theoretical foundation and technical support for the large scale economical exploration and development of lacustrine shale oil resources in China.
基金supported by Science Innovative Foundation of CNPC (Grant No.2008D-5006-01-10)
文摘Forty-six crude oil samples were selected from the Ordovician in the northwestern part of the Tahe oilfield for detailed molecular geochemical and isotopic analysis, including group compositions, carbonhydrogen isotopes and gas chroma-tograms of saturated hydrocarbons, as well as the characteristics of terpane, sterane and other biomarkers, indicating that crude oils are of the same origin from different districts in the Tahe oilfield and were derived from the same source kitchen (or oil source formation), i.e., mainly stemming from marine hydrocarbons. Detailed studies of oil physical properties of 25-honpane revealed that such oils have heavy or thick oil qualities due to biodegradation. Comprehensive assessment in terms of five maturity parameters shows that the oils from the Ordovician with Ro values varying from 0.80% to 1.59% are widely distributed in the northwest of the Tahe oilfield.
文摘Polarized macromolecular compounds in typical lacustrine and marine shale oils collected from the Ordos Basin and Tarim Basin of China were analyzed by FT-ICR-MS. Maturity was taken into consideration by diagenesis physical simulation experiments on shale oils, which had been collected at various temperature and pressure stages. The results showed that similar components existed in non-hydrocarbon and asphaltenes and the main peak compound classes of N1 and O2 were potential parameters for identifying typical marine oil and lacustrine oil in China. Nitrogen compounds/(nitrogen compounds and oxygen compounds), such as N1/(O2+N1), N1/(O3+N1), N1/(N1O1+N1O2) are the maturity indicators, which are related with C-N and C-O bond energy. Differences in molecular components and weights between marine and lacustrine oils are the effective index to identify source maturity and sedimentary environment.