Bridges and tunnels are good solutions to transportation problems in large cities separated by large rivers. In bridge construction great success has been achieved in China, but large-sized immersed tube tunnel constr...Bridges and tunnels are good solutions to transportation problems in large cities separated by large rivers. In bridge construction great success has been achieved in China, but large-sized immersed tube tunnel construction is still new. Element immersing is an important process of immersed tube tunnel construction. The accuracy of tunnel element positioning directly determines the quality of tunnel construction. In order to study the behavior of elements during its lowering to the sea bed, the experiments carried out in the State Key Laboratory of Ocean Engineering of Shanghai Jiaotong University. In consideration of the construction experience abroad and by reference to published papers on the Oresund tunnel in Norway-Sweden and Tokyo Bay tunnel in Japan, an element model to an appropriate scale is developed. A concise description of the model experiment wave environments is carried out, and the feasibility of two immersing strategies is studied.展开更多
Immersed tube tunnels are usually placed on soft soil layers in cross-sea tunnelling engineering.Owing to the influence of stratum conditions and slope design,the longitudinal distribution of substratum layers is gene...Immersed tube tunnels are usually placed on soft soil layers in cross-sea tunnelling engineering.Owing to the influence of stratum conditions and slope design,the longitudinal distribution of substratum layers is generally uneven.Thus,the inhomogeneous deformation of the element-joint becomes the key factor in the failure of the immersed tube tun-nel.Therefore,a corresponding calculation method for joint deformation is needed to explore the deformation law of immersed tube tunnels.By constructing a three-section immersed tube tunnel analysis model(TTM),the relationship between the two types of deformation of the immersed tube tunnel structure in a longitudinal nonuniform soft soil foundation is described,and the deformation characteristics of the immersed structure under different boundaries are discussed.Based on the mechanical behaviour of the joint and foundation,according to the Timoshenko beam on the Vlasov two-parameter foundation(VTM),considering the tidal cyclic load during the operation and maintenance period,an example analysis is given.Moreover,the deformation characteristics and development trend of the immersed tube tunnel under the influence of different soil layers are discussed.The obtained results have a certain guiding significance for the deformation calculation of immersed tube tunnels.展开更多
In the construction of the Shenzhen-Zhongshan Link,a temporary anchorage system,distributed uniformly along the pipe wall,has been employed.To assess the safety and reliability of this system,a combined method utilizi...In the construction of the Shenzhen-Zhongshan Link,a temporary anchorage system,distributed uniformly along the pipe wall,has been employed.To assess the safety and reliability of this system,a combined method utilizing numerical analysis and model experiments was applied to study the safety of the temporary anchorage system and the reliability of the tension rods.Firstly,an overall model of the caisson segment based on GINA rebound force was established to analyze the stress state of the entire system.Secondly,a comprehensive numerical analysis and model experiment verification were conducted for the single tensioning system,revealing its failure mode and safety margin.The results indicate that the tension rod systems are uniformly stressed at an average of 444 k N during underwater jointing,with a safety factor of 1.94.At this point,the maximum von Mises stresses appearing at the front plate corners and the lower edge of the U-groove,with stress values of 181.8 MPa and 172.4 MPa,and safety factors of 1.54 and 1.71,respectively.When the tension rod force reaches 940 k N,the tensioning system reaches its bearing limit,with initial yielding occurring at the front plate corners.Model experiments were conducted to verify the theoretical analysis results,under a test load of 444 k N,the stresses at the front plate corners and the lower edge of the U-groove were 159.6 and 195.9 MPa,respectively.As the test load increased to 940 k N,these stresses reached 390 and 389 MPa,exhibiting good agreement with the numerical analysis.Considering the uncertainty of loads and materials,a reliability analysis of the tension rods was conducted,yielding a reliability index of 4.34,meeting the secondary safety standard.Based on the comprehensive analysis,it can be concluded that the temporary anchorage system in the caisson segments of the Shenzhen-Zhongshan Link exhibits excellent safety margins.展开更多
Multi-scale analysis and non-linear analysis were combined to investigate the hydrodynamics of fluidized beds with and without horizontal tubes. Pressure fluctuations were measured and analyzed employing discrete wave...Multi-scale analysis and non-linear analysis were combined to investigate the hydrodynamics of fluidized beds with and without horizontal tubes. Pressure fluctuations were measured and analyzed employing discrete wavelet analysis, recurrence plot analysis, and recurrence quantification analysis. A systematic procedure was followed to determine wavelet parameters. At low gas velocities, the energy of macro-structures reduces with the addition of the first tube and then increases with the addition of a second tube. However, there is no notable difference at high gas velocities. Determinism is high for the bed without tubes, which can be attributed to the periodic behavior of bubbles. Determinism decreases with the addition of tubes because the breakage of bubbles results in less periodic behavior. The three methods of analysis used in this study captured the effects of immersed tubes on the hydrodynamics of fluidized beds. Recurrence quantitative analysis was found to be a powerful and easy-to-use method that can capture the nonlinear characteristics of fluidized beds much more quickly than conventional methods of nonlinear analysis. This method can thus be effectively used for the online monitoring of hydrodynamic changes in fluidized beds.展开更多
The immersed tube tunnel section of the Shenzhen-Zhongshan Link exhibits complex geological conditions and high back sludge strength. The tunnel cushion adopts the gravel and flaky stone combined cushion. The major in...The immersed tube tunnel section of the Shenzhen-Zhongshan Link exhibits complex geological conditions and high back sludge strength. The tunnel cushion adopts the gravel and flaky stone combined cushion. The major influencing factors of the mechanical deformation characteristics of the gravel and flaky stone composite cushion are studied through a physical model experiment. The following results are reported.(1) The load–settlement curves of the flaky stone cushion become more compact with a dense increment under the design load. These curves can be regarded as nonlinear mechanical characteristics. The load–settlement curves of the gravel cushion and the gravel and flaky stone composite cushion exhibit the characteristics of a two-stage linear change.(2) The flatness of the top of flaky stone cushion considerably affects settlement and secant modulus. The flatness of the top of flaky stone should be ensured during construction.(3) Gradation and thickness exert no evident effect on the compressibility of a cushion. The preloading pressure caused by the construction height difference of the cushion materials plays an important role in improving the initial stiffness of a cushion and reducing initial settlement and overall settlement.(4) This study investigates the preloading under 30 kPa of the 0.7-m flaky stone and 1.0-m gravel combination cushion. It recommends the following secant modulus values: 48.89 MPa for the section of 0–30 kPa and 10.47 MPa for the section of 30–110 kPa.展开更多
Fluidization hydrodynamics are greatly influenced by inter-particle cohesive forces. This paper studies the fluidization of large cohesive particles in a two-dimensional fluidized bed with immersed tubes using “polym...Fluidization hydrodynamics are greatly influenced by inter-particle cohesive forces. This paper studies the fluidization of large cohesive particles in a two-dimensional fluidized bed with immersed tubes using “polymer coating” to introduce cohesive force, to gain better understanding of bubbling behavior when particles become cohesive and its effect on chemical processes. The results show that the cohesive force promotes bubble splitting in the tube bank region, thereby causing an increase in the number and a decline in the aspect ratio of the bubbles. As the cohesive force increases within a low level, the bubble number increases and the bubble diameter decreases, while the aspect ratio exhibits different trends at different fluidization gas velocities. The difference in the evolution of bubble size under various cohesive forces mainly takes place in the region without tubes. When the cohesive force is large enough to generate stable agglomerates on the side walls of the bed, the bubble number and the bed expansion sharply decrease. The tubes serve as a framework that promotes the agglomeration, thus accelerating defluidization. Finally, the bubble profile around tubes was studied and found to greatly depend both on the cohesive forces and the location of tubes.展开更多
Heat transfer coefficients for horizontally immersed tubes have been studied in a model of ICFB (Internally Circulating Fluidized Bed). The characteristics in ICFB were found to be significantly differentfrom those in...Heat transfer coefficients for horizontally immersed tubes have been studied in a model of ICFB (Internally Circulating Fluidized Bed). The characteristics in ICFB were found to be significantly differentfrom those in bubbling bed. There is a flowing zone with high velocity in the heat exchange zone.The heat transfer coefficients strongly depend on the fluidized velocity in the flowing zone. The heatexchange process and suitable bed temperature can be controlled according to this feature. Based onthe results of the experiments, a formulation for heat transfer has been developed.展开更多
The highway tunnel system in China has in recent years surpassed Europe, the United States, and other developed countries in terms of mileage, scale, complexity, and technical achievement. Much scientific research has...The highway tunnel system in China has in recent years surpassed Europe, the United States, and other developed countries in terms of mileage, scale, complexity, and technical achievement. Much scientific research has been conducted, and the results have greatly facilitated the rapid development of China's highway tunnel building capacity. This article presents the historical development of highway tunneling in China, according to specific charac- teristics based on construction and operation. It provides a systematic analysis of the major achievements and chal- lenges with respect to construction techniques, operation, monitoring, repair, and maintenance. Together with future trends of highway tunneling in China, suggestions have been made for further research, and development prospects have been identified with the for a Chinese-style highway aim of laying the foundation tunnel construction method and technical architecture.展开更多
文摘Bridges and tunnels are good solutions to transportation problems in large cities separated by large rivers. In bridge construction great success has been achieved in China, but large-sized immersed tube tunnel construction is still new. Element immersing is an important process of immersed tube tunnel construction. The accuracy of tunnel element positioning directly determines the quality of tunnel construction. In order to study the behavior of elements during its lowering to the sea bed, the experiments carried out in the State Key Laboratory of Ocean Engineering of Shanghai Jiaotong University. In consideration of the construction experience abroad and by reference to published papers on the Oresund tunnel in Norway-Sweden and Tokyo Bay tunnel in Japan, an element model to an appropriate scale is developed. A concise description of the model experiment wave environments is carried out, and the feasibility of two immersing strategies is studied.
基金The work was financially supported by the Natural Science Foundation of Guangdong Province,China(Grant No.2022A1515011200)the State Key Laboratory for Geo-Mechanics and Deep Underground Engineering of China University of Mining&Technology(Grant No.SKLGDUEK2005)the Science and Technology Planning Project of Guangdong Province of China(Grant No.STKJ2021129).
文摘Immersed tube tunnels are usually placed on soft soil layers in cross-sea tunnelling engineering.Owing to the influence of stratum conditions and slope design,the longitudinal distribution of substratum layers is generally uneven.Thus,the inhomogeneous deformation of the element-joint becomes the key factor in the failure of the immersed tube tun-nel.Therefore,a corresponding calculation method for joint deformation is needed to explore the deformation law of immersed tube tunnels.By constructing a three-section immersed tube tunnel analysis model(TTM),the relationship between the two types of deformation of the immersed tube tunnel structure in a longitudinal nonuniform soft soil foundation is described,and the deformation characteristics of the immersed structure under different boundaries are discussed.Based on the mechanical behaviour of the joint and foundation,according to the Timoshenko beam on the Vlasov two-parameter foundation(VTM),considering the tidal cyclic load during the operation and maintenance period,an example analysis is given.Moreover,the deformation characteristics and development trend of the immersed tube tunnel under the influence of different soil layers are discussed.The obtained results have a certain guiding significance for the deformation calculation of immersed tube tunnels.
基金supported by the National Key Research and Development Program of China(No.2021YFB1600300)。
文摘In the construction of the Shenzhen-Zhongshan Link,a temporary anchorage system,distributed uniformly along the pipe wall,has been employed.To assess the safety and reliability of this system,a combined method utilizing numerical analysis and model experiments was applied to study the safety of the temporary anchorage system and the reliability of the tension rods.Firstly,an overall model of the caisson segment based on GINA rebound force was established to analyze the stress state of the entire system.Secondly,a comprehensive numerical analysis and model experiment verification were conducted for the single tensioning system,revealing its failure mode and safety margin.The results indicate that the tension rod systems are uniformly stressed at an average of 444 k N during underwater jointing,with a safety factor of 1.94.At this point,the maximum von Mises stresses appearing at the front plate corners and the lower edge of the U-groove,with stress values of 181.8 MPa and 172.4 MPa,and safety factors of 1.54 and 1.71,respectively.When the tension rod force reaches 940 k N,the tensioning system reaches its bearing limit,with initial yielding occurring at the front plate corners.Model experiments were conducted to verify the theoretical analysis results,under a test load of 444 k N,the stresses at the front plate corners and the lower edge of the U-groove were 159.6 and 195.9 MPa,respectively.As the test load increased to 940 k N,these stresses reached 390 and 389 MPa,exhibiting good agreement with the numerical analysis.Considering the uncertainty of loads and materials,a reliability analysis of the tension rods was conducted,yielding a reliability index of 4.34,meeting the secondary safety standard.Based on the comprehensive analysis,it can be concluded that the temporary anchorage system in the caisson segments of the Shenzhen-Zhongshan Link exhibits excellent safety margins.
基金supported by the Iranian National Science Foundation(Grant No.93/36348)
文摘Multi-scale analysis and non-linear analysis were combined to investigate the hydrodynamics of fluidized beds with and without horizontal tubes. Pressure fluctuations were measured and analyzed employing discrete wavelet analysis, recurrence plot analysis, and recurrence quantification analysis. A systematic procedure was followed to determine wavelet parameters. At low gas velocities, the energy of macro-structures reduces with the addition of the first tube and then increases with the addition of a second tube. However, there is no notable difference at high gas velocities. Determinism is high for the bed without tubes, which can be attributed to the periodic behavior of bubbles. Determinism decreases with the addition of tubes because the breakage of bubbles results in less periodic behavior. The three methods of analysis used in this study captured the effects of immersed tubes on the hydrodynamics of fluidized beds. Recurrence quantitative analysis was found to be a powerful and easy-to-use method that can capture the nonlinear characteristics of fluidized beds much more quickly than conventional methods of nonlinear analysis. This method can thus be effectively used for the online monitoring of hydrodynamic changes in fluidized beds.
基金supported by the National Key Research and Development Program of China(Nos.2018YFC0809600 and 2018YFC0809602)。
文摘The immersed tube tunnel section of the Shenzhen-Zhongshan Link exhibits complex geological conditions and high back sludge strength. The tunnel cushion adopts the gravel and flaky stone combined cushion. The major influencing factors of the mechanical deformation characteristics of the gravel and flaky stone composite cushion are studied through a physical model experiment. The following results are reported.(1) The load–settlement curves of the flaky stone cushion become more compact with a dense increment under the design load. These curves can be regarded as nonlinear mechanical characteristics. The load–settlement curves of the gravel cushion and the gravel and flaky stone composite cushion exhibit the characteristics of a two-stage linear change.(2) The flatness of the top of flaky stone cushion considerably affects settlement and secant modulus. The flatness of the top of flaky stone should be ensured during construction.(3) Gradation and thickness exert no evident effect on the compressibility of a cushion. The preloading pressure caused by the construction height difference of the cushion materials plays an important role in improving the initial stiffness of a cushion and reducing initial settlement and overall settlement.(4) This study investigates the preloading under 30 kPa of the 0.7-m flaky stone and 1.0-m gravel combination cushion. It recommends the following secant modulus values: 48.89 MPa for the section of 0–30 kPa and 10.47 MPa for the section of 30–110 kPa.
基金Financial support of this work by the National Nature Science Foundation of China (Grant numbers 51306035 and 51676042) and Scientific Research Foundation of the Graduate School of Southeast University are gratefully acknowledged.
文摘Fluidization hydrodynamics are greatly influenced by inter-particle cohesive forces. This paper studies the fluidization of large cohesive particles in a two-dimensional fluidized bed with immersed tubes using “polymer coating” to introduce cohesive force, to gain better understanding of bubbling behavior when particles become cohesive and its effect on chemical processes. The results show that the cohesive force promotes bubble splitting in the tube bank region, thereby causing an increase in the number and a decline in the aspect ratio of the bubbles. As the cohesive force increases within a low level, the bubble number increases and the bubble diameter decreases, while the aspect ratio exhibits different trends at different fluidization gas velocities. The difference in the evolution of bubble size under various cohesive forces mainly takes place in the region without tubes. When the cohesive force is large enough to generate stable agglomerates on the side walls of the bed, the bubble number and the bed expansion sharply decrease. The tubes serve as a framework that promotes the agglomeration, thus accelerating defluidization. Finally, the bubble profile around tubes was studied and found to greatly depend both on the cohesive forces and the location of tubes.
文摘Heat transfer coefficients for horizontally immersed tubes have been studied in a model of ICFB (Internally Circulating Fluidized Bed). The characteristics in ICFB were found to be significantly differentfrom those in bubbling bed. There is a flowing zone with high velocity in the heat exchange zone.The heat transfer coefficients strongly depend on the fluidized velocity in the flowing zone. The heatexchange process and suitable bed temperature can be controlled according to this feature. Based onthe results of the experiments, a formulation for heat transfer has been developed.
基金supported by grants from the National Natural Science Foundation of China(No.51378434)the National Basic Research Program of China 973 Program(No.2010CB732105)+1 种基金the National Natural Science Foundation of High-Speed Rail Joint Fund(No.U1134208)the National Science and Technology Support Plan of China(No.2013BAB10B00)
文摘The highway tunnel system in China has in recent years surpassed Europe, the United States, and other developed countries in terms of mileage, scale, complexity, and technical achievement. Much scientific research has been conducted, and the results have greatly facilitated the rapid development of China's highway tunnel building capacity. This article presents the historical development of highway tunneling in China, according to specific charac- teristics based on construction and operation. It provides a systematic analysis of the major achievements and chal- lenges with respect to construction techniques, operation, monitoring, repair, and maintenance. Together with future trends of highway tunneling in China, suggestions have been made for further research, and development prospects have been identified with the for a Chinese-style highway aim of laying the foundation tunnel construction method and technical architecture.