Objective To develop a coated electrode of immobilized denitrificants and to evaluate the performance of a bioelectrochemical reactor to enhance and control denitrification, Methods Denitrifying bacteria were develope...Objective To develop a coated electrode of immobilized denitrificants and to evaluate the performance of a bioelectrochemical reactor to enhance and control denitrification, Methods Denitrifying bacteria were developed by batch incubation and immobilized with polyvinyl alcohol (PVA) on the surface of activated carbon fiber (ACF) to make a coated electrode. Then the coated electrode (cathode) and graphite electrode (anode) were transferred to the reactor to reduce nitrate. Results After acclimated to the mixtrophic and autotrophic denitrification stages, the denitrifying bacteria could use hydrogen as an electron donor to reduce nitrate, When the initial nitrate concentration was 30.2 mg NO3-N/L, the denitrification efficiency was 57.3% at an applied electric current of 15 mA and a hydraulic retention time (HRT) of 12 hours. Correspondingly, the current density was 0.083 mA / cm^2. The nitrate removal rate of the reactor was 34,4 g NO3-N / m^3,d, and the surface area loading was 1.34 g NO3-N / m^2.d. Conclusion The coated electrode may keep high quantity of blomass, thus achieving a high denitrification rate. Denitrification efficiencies are related to HRT, current density, oxidation reduction potential (ORP), dissolved oxygen (DO), pH value, and temperature,展开更多
Enzyme was immobilized on an ammonium ion-selective electrode by different methods.An ion-selective electrode is not completely ion-specific,and interfering ions react with the ion-selective electrode membrane,alterin...Enzyme was immobilized on an ammonium ion-selective electrode by different methods.An ion-selective electrode is not completely ion-specific,and interfering ions react with the ion-selective electrode membrane,altering the measured potential.Therefore,the characteristics of the effect of other ions on ammonium ion-selective electrode-based urea biosensors are considered.Based on the experimental results,the urea biosensor based on entrapment had a high response voltage of around 189 mV and fast response time of around 16 sec.Moreover,selectivity of the urea biosensor in different interfering ions was considered to elucidate the characteristics of ammonium ion-selective electrode-based biosensors.展开更多
The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon ele...The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase (ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected by using i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrode with 0.01U activity value and the detection limit of carbaryl is 10^- 12 g L ^-1 so the enzyme biosensor showed good properties for pesticides residue detection.展开更多
A new approach based on potential control was firstly used for the immobilization of horseradish peroxidase (HRP) as the model protein. The self-assembly monolayer (SAM) was prepared with 2-aminoethanethiol (AET) on t...A new approach based on potential control was firstly used for the immobilization of horseradish peroxidase (HRP) as the model protein. The self-assembly monolayer (SAM) was prepared with 2-aminoethanethiol (AET) on the gold electrode. The charge on HRP was adjusted by means of the acidity of the phosphate buffer solution (PBS) for dissolving the HRP. The in-fluence of electric potential on HRP immobilization was investigated by means of colorimetric immunoassay of enzyme-substrate interaction (CIESI) using an automatic plate reader. The HRP modified electrodes were characterized with X-ray photoelectron spectroscopy (XPS) as well as atomic force microscope (AFM) on template-stripped gold surface. The potential for maximum immobilization of HRP was near the zero charge potential. The result indicates that controlled potential can affect the course of HRP immobilization without the loss of enzymic activity. It is of great significance for the control of biomolecular self-assembly and the intrinsic electric device.展开更多
基金This research was supported by the Natural Natural Science Foundation (No. 39870664).
文摘Objective To develop a coated electrode of immobilized denitrificants and to evaluate the performance of a bioelectrochemical reactor to enhance and control denitrification, Methods Denitrifying bacteria were developed by batch incubation and immobilized with polyvinyl alcohol (PVA) on the surface of activated carbon fiber (ACF) to make a coated electrode. Then the coated electrode (cathode) and graphite electrode (anode) were transferred to the reactor to reduce nitrate. Results After acclimated to the mixtrophic and autotrophic denitrification stages, the denitrifying bacteria could use hydrogen as an electron donor to reduce nitrate, When the initial nitrate concentration was 30.2 mg NO3-N/L, the denitrification efficiency was 57.3% at an applied electric current of 15 mA and a hydraulic retention time (HRT) of 12 hours. Correspondingly, the current density was 0.083 mA / cm^2. The nitrate removal rate of the reactor was 34,4 g NO3-N / m^3,d, and the surface area loading was 1.34 g NO3-N / m^2.d. Conclusion The coated electrode may keep high quantity of blomass, thus achieving a high denitrification rate. Denitrification efficiencies are related to HRT, current density, oxidation reduction potential (ORP), dissolved oxygen (DO), pH value, and temperature,
文摘Enzyme was immobilized on an ammonium ion-selective electrode by different methods.An ion-selective electrode is not completely ion-specific,and interfering ions react with the ion-selective electrode membrane,altering the measured potential.Therefore,the characteristics of the effect of other ions on ammonium ion-selective electrode-based urea biosensors are considered.Based on the experimental results,the urea biosensor based on entrapment had a high response voltage of around 189 mV and fast response time of around 16 sec.Moreover,selectivity of the urea biosensor in different interfering ions was considered to elucidate the characteristics of ammonium ion-selective electrode-based biosensors.
文摘The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase (ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected by using i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrode with 0.01U activity value and the detection limit of carbaryl is 10^- 12 g L ^-1 so the enzyme biosensor showed good properties for pesticides residue detection.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 60171005, 60121101)the Natural Science Foundation of Jiangsu Province, China (Grant No. 03KJD310177).
文摘A new approach based on potential control was firstly used for the immobilization of horseradish peroxidase (HRP) as the model protein. The self-assembly monolayer (SAM) was prepared with 2-aminoethanethiol (AET) on the gold electrode. The charge on HRP was adjusted by means of the acidity of the phosphate buffer solution (PBS) for dissolving the HRP. The in-fluence of electric potential on HRP immobilization was investigated by means of colorimetric immunoassay of enzyme-substrate interaction (CIESI) using an automatic plate reader. The HRP modified electrodes were characterized with X-ray photoelectron spectroscopy (XPS) as well as atomic force microscope (AFM) on template-stripped gold surface. The potential for maximum immobilization of HRP was near the zero charge potential. The result indicates that controlled potential can affect the course of HRP immobilization without the loss of enzymic activity. It is of great significance for the control of biomolecular self-assembly and the intrinsic electric device.