期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Rubber sheet strewn with TiO_2 particles: Photocatalytic activity and recyclability 被引量:3
1
作者 Chaval Sriwong Sumpun Wongnawa Orasa Patarapaiboolchai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第3期464-472,共9页
A new method for the preparation of rubber sheet strewn with titanium dioxide particles (TiO2-strewn sheet) is presented. This simple and low cost method is based on the use of TiO2 powder (Degussa P25) being stre... A new method for the preparation of rubber sheet strewn with titanium dioxide particles (TiO2-strewn sheet) is presented. This simple and low cost method is based on the use of TiO2 powder (Degussa P25) being strewn onto the sheet made from rubber latex (60% HA) through a steel sieve. The characteristic of the TiO2-strewn sheet was studied by using scanning electron microscopy/energy dispersive X-ray spectrometer (SEM/EDS) and X-ray diffractometer (XRD) techniques. The photocatalytic activity of TiO2-strewn rubber sheet was evaluated using Indigo Carmine (IC) dye as a model for organic dye pollutant in water. The results showed that the TiO2-strewn sheet could degrade IC dye solution under UV light irradiation. The effects of pH, initial concentration, and the intensity of UV light on the photodegradation were also investigated. Kinetics of the photocatalytic degradation was of the first-order reaction. The used TiO2-strewn sheet can be recovered and reused. The recycling uses did not require any cleaning between successive uses and no decline in the photodegradation efficiency was observed compared with freshly prepared TiO2-strewn sheet. 展开更多
关键词 immobilized titanium dioxide TiO2 rubber composite dye degradation photocatalytic degradation indigo carmine
原文传递
Combined effects of adsorption and photocatalysis by hybrid TiO_2/ZnO-calcium alginate beads for the removal of copper 被引量:2
2
作者 Devagi Kanakaraju Shantini Ravichandar Ying Chin Lim 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第5期214-223,共10页
The use of nanosized titanium dioxide(TiO2) and zinc oxide(ZnO) in the suspension form during treatment makes the recovering and recycling of photocatalysts difficult.Hence,supported photocatalysts are preferred f... The use of nanosized titanium dioxide(TiO2) and zinc oxide(ZnO) in the suspension form during treatment makes the recovering and recycling of photocatalysts difficult.Hence,supported photocatalysts are preferred for practical water treatment applications.This study was conducted to investigate the efficiency of calcium alginate(CaAlg) beads that were immobilized with hybrid photocatalysts,TiO2/ZnO to form TiO2/ZnO-CaAlg.These immobilized beads,with three different mass ratios of TiO2:ZnO(1:1,1:2,and 2:1) were used to remove Cu(Ⅱ) in aqueous solutions in the presence of ultraviolet light.These beads were subjected to three cycles of photocatalytic treatment with different initial Cu(Ⅱ) concentrations(10-80 ppm).EDX spectra have confirmed the inclusion of Ti and Zn on the surface of the CaAlg beads.Meanwhile,the surface morphology of the beads as determined using SEM,has indicated differences of before and after the photocatalytic treatment of Cu(Ⅱ).Among all three,the equivalent mass ratio TiO2/ZnO-CaAlg beads have shown the best performance in removing Cu(Ⅱ) during all three recycling experiments.Those TiO2/ZnO-CaAlg beads have also shown consistent removal of Cu,ranging from 7.14-52.0 ppm(first cycle) for initial concentrations of10-80 ppm.In comparison,bare CaAlg was only able to remove 6.9-48 ppm of similar initial Cu concentrations.Thus,the potential use of TiO2/ZnO-CaAlg beads as environmentally friendly composite material can be further extended for heavy metal removal from contaminated water. 展开更多
关键词 Alginate Heavy metals Photocatalyst Immobilization titanium dioxide Zinc oxide
原文传递
Development of a field enhanced photocatalytic device for biocide of coliform bacteria 被引量:1
3
作者 Jeff M.Huber Krista L.Carlson +2 位作者 Otakuye Conroy-Ben Mano Misra Swomitra K.Mohanty 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第6期38-44,共7页
A field enhanced flow reactor using bias assisted photocatalysis was developed for bacterial disinfection in lab-synthesized and natural waters. The reactor provided complete inactivation of contaminated waters with f... A field enhanced flow reactor using bias assisted photocatalysis was developed for bacterial disinfection in lab-synthesized and natural waters. The reactor provided complete inactivation of contaminated waters with flow rates of 50 mL/min. The device consisted of titanium dioxide nanotube arrays, with an externally applied bias of up to 6 V. Light intensity, applied voltage, background electrolytes and bacteria concentration were all found to impact the device performance. Complete inactivation of Escherichia coli W3110(- 8 × 10^3CFU/mL) occurred in 15 sec in the reactor irradiated at 25 mW/cm^2 with an applied voltage of 4 V in a 100 ppm NaCl solution. Real world testing was conducted using source water from Emigration Creek in Salt Lake City, Utah. Disinfection of natural creek water proved more challenging, providing complete bacterial inactivation after 25 sec at 6 V. A reduction in bactericidal efficacy was attributed to the presence of inorganic and organic species, as well as the increase in robustness of natural bacteria. 展开更多
关键词 titanium dioxide Nanotubes immobilized Photocatalysis Escherichia coli Inactivation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部