Distributed generation has attracted great attention in recent years, thanks to the progress in new-generation technologies and advanced power electronics. And micro-grid can make full use of distributed generation, s...Distributed generation has attracted great attention in recent years, thanks to the progress in new-generation technologies and advanced power electronics. And micro-grid can make full use of distributed generation, so it has been widespread concern. On the other hand due to the extensive use of power electronic devices and many of the loads within micro-grid are nonlinear in nature, Micro-grid generate a large number of harmonics, so harmonics pollution needs to be addressed. Usually we use passive filter to filter out harmonic, in this paper, we propose a new method to optimize the filter parameters, so passive filter can filter out harmonic better. This method utilizes immune particle swarm optimization algorithm to optimize filter parameters. It can be shown from the simulation results that the proposed method is effective for micro-grid voltage harmonics compensation.展开更多
A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune se...A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network.展开更多
Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a ...Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation.展开更多
The optimal allocation model of regional water resources is built with the purpose of maximizing the comprehensive economic,social and environmental benefits of regional water consumption.In order to solve the problem...The optimal allocation model of regional water resources is built with the purpose of maximizing the comprehensive economic,social and environmental benefits of regional water consumption.In order to solve the problems that easily appear during the model solution of regional water resource optimal allocation with multiple water sources,multiple users and multiple objectives like"curse of dimensionality"or sinking into local optimum,this paper proposes a particle swarm optimization(PSO)algorithm based on immune evolutionary algorithm(IEA).This algorithm introduces immunology principle into particle swarm algorithm.Its immune memorizing and self-adjusting mechanism is utilized to keep the particles in the fitness level at a certain concentration and guarantee the diversity of population.Also,the global search characteristics of IEA and the local search capacity of particle swarm algorithm have been fully utilized to overcome the dependence of PSO on initial swarm and the deficiency of vulnerability to local optimum.After applying this model to the allocation of water resources in Zhoukou,we obtain the scheme for optimization allocation of water resources in the planning level years,i.e.2015and 2025 under the guarantee rate of 50%.The calculation results indicate that the application of this algorithm to solve the issue of optimal allocation of regional water resources is reliable and reasonable.Thus it ofers a new idea for solving the issue of optimal allocation of water resources.展开更多
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell...This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.展开更多
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici...Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem.展开更多
文摘Distributed generation has attracted great attention in recent years, thanks to the progress in new-generation technologies and advanced power electronics. And micro-grid can make full use of distributed generation, so it has been widespread concern. On the other hand due to the extensive use of power electronic devices and many of the loads within micro-grid are nonlinear in nature, Micro-grid generate a large number of harmonics, so harmonics pollution needs to be addressed. Usually we use passive filter to filter out harmonic, in this paper, we propose a new method to optimize the filter parameters, so passive filter can filter out harmonic better. This method utilizes immune particle swarm optimization algorithm to optimize filter parameters. It can be shown from the simulation results that the proposed method is effective for micro-grid voltage harmonics compensation.
文摘A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network.
文摘Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation.
基金the National Natural Science Foundation of China(No.40839902)
文摘The optimal allocation model of regional water resources is built with the purpose of maximizing the comprehensive economic,social and environmental benefits of regional water consumption.In order to solve the problems that easily appear during the model solution of regional water resource optimal allocation with multiple water sources,multiple users and multiple objectives like"curse of dimensionality"or sinking into local optimum,this paper proposes a particle swarm optimization(PSO)algorithm based on immune evolutionary algorithm(IEA).This algorithm introduces immunology principle into particle swarm algorithm.Its immune memorizing and self-adjusting mechanism is utilized to keep the particles in the fitness level at a certain concentration and guarantee the diversity of population.Also,the global search characteristics of IEA and the local search capacity of particle swarm algorithm have been fully utilized to overcome the dependence of PSO on initial swarm and the deficiency of vulnerability to local optimum.After applying this model to the allocation of water resources in Zhoukou,we obtain the scheme for optimization allocation of water resources in the planning level years,i.e.2015and 2025 under the guarantee rate of 50%.The calculation results indicate that the application of this algorithm to solve the issue of optimal allocation of regional water resources is reliable and reasonable.Thus it ofers a new idea for solving the issue of optimal allocation of water resources.
基金supported by the National Natural Science Foundation of China(7127106671171065+1 种基金71202168)the Natural Science Foundation of Heilongjiang Province(GC13D506)
文摘This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.
文摘Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem.