期刊文献+
共找到383篇文章
< 1 2 20 >
每页显示 20 50 100
Location and Capacity Determination Method of Electric Vehicle Charging Station Based on Simulated Annealing Immune Particle Swarm Optimization 被引量:2
1
作者 Jiulong Sun Yanbo Che +2 位作者 Ting Yang Jian Zhang Yibin Cai 《Energy Engineering》 EI 2023年第2期367-384,共18页
As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of ... As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence. 展开更多
关键词 Electric vehicle charging station location selection and capacity configuration loss of distribution system simulated annealing immune particle swarm optimization Voronoi diagram
下载PDF
A Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller Model Combined with an Improved Particle Swarm Optimization Method for Fall Detection
2
作者 Jyun-Guo Wang 《Computer Systems Science & Engineering》 2024年第5期1149-1170,共22页
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t... In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%. 展开更多
关键词 Double interactively recurrent fuzzy cerebellar model articulation controller(D-IRFCMAC) improved particle swarm optimization(ipso) fall detection
下载PDF
Immune particle swarm optimization of linear frequency modulation in acoustic communication 被引量:4
3
作者 Haipeng Ren Yang Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期450-456,共7页
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca... With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method. 展开更多
关键词 underwater acoustic communication carrier waveform inter-displacement (CWlD) multi-objective optimization immune particle swarm optimization (ipso).
下载PDF
Harmonic Suppression Method Based on Immune Particle Swarm Optimization Algorithm in Micro-Grid 被引量:1
4
作者 Ying Zhang Yufeng Gong +1 位作者 Junyu Chen Jing Wang 《Journal of Power and Energy Engineering》 2014年第4期271-279,共9页
Distributed generation has attracted great attention in recent years, thanks to the progress in new-generation technologies and advanced power electronics. And micro-grid can make full use of distributed generation, s... Distributed generation has attracted great attention in recent years, thanks to the progress in new-generation technologies and advanced power electronics. And micro-grid can make full use of distributed generation, so it has been widespread concern. On the other hand due to the extensive use of power electronic devices and many of the loads within micro-grid are nonlinear in nature, Micro-grid generate a large number of harmonics, so harmonics pollution needs to be addressed. Usually we use passive filter to filter out harmonic, in this paper, we propose a new method to optimize the filter parameters, so passive filter can filter out harmonic better. This method utilizes immune particle swarm optimization algorithm to optimize filter parameters. It can be shown from the simulation results that the proposed method is effective for micro-grid voltage harmonics compensation. 展开更多
关键词 MICRO-GRID immune particle swarm optimization Algorithm HARMONIC COMPENSATION
下载PDF
An estimation method for direct maintenance cost of aircraft components based on particle swarm optimization with immunity algorithm 被引量:3
5
作者 吴静敏 左洪福 陈勇 《Journal of Central South University》 SCIE EI CAS 2005年第S2期95-101,共7页
A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune se... A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network. 展开更多
关键词 aircraft design maintenance COST particle swarm optimization immunITY algorithm PREDICT
下载PDF
Multi-target Collaborative Combat Decision-Making by Improved Particle Swarm Optimizer 被引量:5
6
作者 Ding Yongfei Yang Liuqing +2 位作者 Hou Jianyong Jin Guting Zhen Ziyang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期181-187,共7页
A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is establishe... A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat. 展开更多
关键词 collaborative combat multi-target decision-making improved particle swarm optimization(ipso)
下载PDF
Immunity clone algorithm with particle swarm evolution 被引量:2
7
作者 刘丽珏 蔡自兴 陈虹 《Journal of Central South University of Technology》 EI 2006年第6期703-706,共4页
Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algori... Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algorithm lies in two aspects. Via immunity operation, the diversity of the antibodies was maintained, and the speed of convergent was improved by using particle swarm evolution equations. Simulation programme and three functions were used to check the effect of the algorithm. The advanced algorithm were compared with clonal selection algorithm and particle swarm algorithm. The results show that this advanced algorithm can converge to the global optimum at a great rate in a given range, the performance of optimization is improved effectively. 展开更多
关键词 immunITY particle swarm optimization CLONE MUTATION
下载PDF
基于VMD-LSTM-IPSO-GRU的电力负荷预测
8
作者 肖威 方娜 邓心 《科学技术与工程》 北大核心 2024年第16期6734-6741,共8页
为了挖掘电力负荷数据中的潜藏信息,提高短期负荷预测的精度,针对电力负荷强非线性、非平稳性等特点,提出一种基于变分模态分解(variational mode decomposition,VMD)、长短时记忆神经网络(long-term and short-term memory network,LS... 为了挖掘电力负荷数据中的潜藏信息,提高短期负荷预测的精度,针对电力负荷强非线性、非平稳性等特点,提出一种基于变分模态分解(variational mode decomposition,VMD)、长短时记忆神经网络(long-term and short-term memory network,LSTM)、改进的粒子群算法(improve particle swarm optimization,IPSO)和门控循环单元(gated recurrent unit neural network,GRU)的混合预测模型。首先,使用相关性分析确定输入因素,再将负荷数据运用VMD算法结合样本熵分解为一系列本征模态分量(intrinsic mode fuction,IMF)和残差量,进而合理地确定分解层数和惩罚因子;其次,根据过零率将这些量划分为低频和高频,低频分量使用LSTM网络,高频分量利用IPSO-GRU网络分别进行预测;最后,将预测结果重构得到电力负荷的最终结果。仿真结果表明:相对于其他模型,所提混合模型可有效的提取模态特征,具有更高的预测精度。 展开更多
关键词 短期负荷预测 变分模态分解(VMD) 长短时记忆神经网络(LSTM) 门控循环单元(GRU) 改进的粒子群优化算法(ipso)
下载PDF
基于IPSO-LSTM的新能源汽车锂电池健康状态监测 被引量:2
9
作者 刘丹 王瑞虎 +2 位作者 吕伟 秦岭 林水春 《中国安全科学学报》 CAS CSCD 北大核心 2023年第9期94-102,共9页
为监测新能源汽车锂电池的健康状态(SOH),防范电池故障引发安全事故风险,提出改进粒子群算法(IPSO)和长短期记忆(LSTM)神经网络相结合的模型,监测锂电池的SOH。首先,采用Spearman相关性分析法,提取锂电池SOH监测的健康因子;其次,采用线... 为监测新能源汽车锂电池的健康状态(SOH),防范电池故障引发安全事故风险,提出改进粒子群算法(IPSO)和长短期记忆(LSTM)神经网络相结合的模型,监测锂电池的SOH。首先,采用Spearman相关性分析法,提取锂电池SOH监测的健康因子;其次,采用线性惯性权重和非对称学习因子改进传统粒子群算法(PSO),利用IPSO算法对LSTM模型的隐含层神经元个数、神经元失活率、批处理值进行关键参数寻优,进一步优化LSTM模型,建立IPSO-LSTM锂电池SOH监测模型;最后,以新能源汽车主流采用的18650锂电池数据集验证IPSO-LSTM模型,并对比分析BP、LSTM和PSO-LSTM这3种模型。结果表明:IPSO-LSTM模型的平均绝对误差(MAE)在0.02以内、均方根误差(RMSE)在0.03以内,监测误差在15%以内,相较于BP、LSTM、PSO-LSTM模型,IPSO-LSTM模型的误差指标值均最小,模型具有更高的精度和稳定性。 展开更多
关键词 改进粒子群算法(ipso) 长短期记忆(LSTM) 新能源汽车 锂电池 健康状态(SOH)
下载PDF
基于IPSO算法的短期电力负荷预测模型研究 被引量:6
10
作者 王峰 《自动化仪表》 CAS 2023年第4期22-26,共5页
为有效减小短期电力负荷预测的预测误差,提高预测精度、缩短预测时间,应用改进粒子群优化(IPSO)算法建立了1种短期电力负荷预测模型。通过水平方向和垂直方向的平滑修正,对历史数据的异常负荷点进行识别并修正。利用相同日期类型正常负... 为有效减小短期电力负荷预测的预测误差,提高预测精度、缩短预测时间,应用改进粒子群优化(IPSO)算法建立了1种短期电力负荷预测模型。通过水平方向和垂直方向的平滑修正,对历史数据的异常负荷点进行识别并修正。利用相同日期类型正常负荷,计算缺失数据填充值。采用模糊化处理,计算日期类型、温度、天气隶属度函数,对短期负荷变化因素进行量化处理。将历史数据的负荷值和量化值作为训练数据。为避免粒子群优化(PSO)算法陷入局部最优,采用IPSO算法找到全局最优解,建立了短期负荷预测模型,实现了短期电力负荷预测。试验结果表明,所设计模型预测结果在休息日和工作日的最大相对误差值、平均相对误差值分别为0.97%、0.53%和0.99%、0.65%,能够有效减小预测误差、提高预测精度、缩短预测时间。该研究为电力系统相关人员进行负荷预测提供了参考。 展开更多
关键词 改进粒子群优化算法 短期电力负荷 负荷预测 电力系统 异常负荷点 模糊化处理 隶属度函数 全局最优解
下载PDF
Application of Particle Swarm Algorithm in the Optimal Allocation of Regional Water Resources Based on Immune Evolutionary Algorithm 被引量:4
11
作者 屈国栋 楼章华 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第5期634-640,共7页
The optimal allocation model of regional water resources is built with the purpose of maximizing the comprehensive economic,social and environmental benefits of regional water consumption.In order to solve the problem... The optimal allocation model of regional water resources is built with the purpose of maximizing the comprehensive economic,social and environmental benefits of regional water consumption.In order to solve the problems that easily appear during the model solution of regional water resource optimal allocation with multiple water sources,multiple users and multiple objectives like"curse of dimensionality"or sinking into local optimum,this paper proposes a particle swarm optimization(PSO)algorithm based on immune evolutionary algorithm(IEA).This algorithm introduces immunology principle into particle swarm algorithm.Its immune memorizing and self-adjusting mechanism is utilized to keep the particles in the fitness level at a certain concentration and guarantee the diversity of population.Also,the global search characteristics of IEA and the local search capacity of particle swarm algorithm have been fully utilized to overcome the dependence of PSO on initial swarm and the deficiency of vulnerability to local optimum.After applying this model to the allocation of water resources in Zhoukou,we obtain the scheme for optimization allocation of water resources in the planning level years,i.e.2015and 2025 under the guarantee rate of 50%.The calculation results indicate that the application of this algorithm to solve the issue of optimal allocation of regional water resources is reliable and reasonable.Thus it ofers a new idea for solving the issue of optimal allocation of water resources. 展开更多
关键词 immune evolutionary algorithm(IEA) particle swarm optimization(PSO) water resources optimal allocation
原文传递
基于CEEMDAN-IPSO-LSTM的城市轨道交通短时客流预测方法研究 被引量:3
12
作者 曾璐 李紫诺 +1 位作者 杨杰 许心越 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第9期3273-3286,共14页
消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函... 消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函数分量和剩余分量后,利用引入自适应策略的改进粒子群算法(IPSO)动态求解长短期记忆神经网络(LSTM)超参数的最优值,构建CEEMDAN-IPSO-LSTM组合模型预测城市轨道交通短时客流量。以广州地铁杨箕站自动售检票系统采集的历史进(出)站客流数据为例进行实验,研究结果表明:IPSO算法较PSO算法在基准测试函数Sphere,Sum Squars,Sum of Different Power,Rosenbrock,Rastigrin,Ackley,Griewank和Penalized上的最小值、最大值、平均值和标准差均更接近最佳优化值,CEEMDAN-IPSO-LSTM模型较LSTM模型、CEEMDAN-LSTM模型、CEEMDAN-PSO-LSTM模型的全月全日进(出)站的预测误差评价指标SD,RMSE,MAE和MAPE分别降低了12~40人次(13~35人次)、13~44人次(12~35人次)、6~37人次(12~31人次)和5.08%~46.89%(6.5%~35.1%),R和R2分别提高了0.07%~2.32%(0.86%~3.63%)和0.13%~2.19%(0.67%~1.67%),同时在工作日不同时段和非工作日全日的预测性能均达到最优效果。IPSO算法的收敛速度和参数寻优精度均优于PSO算法,且CEEMDAN-IPSO-LSTM模型可应用于城市轨道交通短时客流量的精确预测,同时可为设计规划线网路线、缓解交通压力、提高乘客出行服务质量等提供基础数据支撑。 展开更多
关键词 城市轨道交通 短时客流预测 自适应噪声完全集成经验模式分解算法 改进粒子群算法 长短期记忆神经网络 组合模型 CEEMDAN-ipso-LSTM
下载PDF
基于VMD和DAIPSO-GPR解决容量再生现象的锂离子电池寿命预测研究 被引量:3
13
作者 刘金凤 陈浩玮 HERBERT Ho-Ching Iu 《电子与信息学报》 EI CSCD 北大核心 2023年第3期1111-1120,共10页
锂离子电池应用时表现出的时变、动态、非线性等特征,以及容量再生现象,导致传统模型对锂离子电池剩余使用寿命(RUL)预测的准确性低,该文将变分模态分解(VMD)和高斯过程回归(GPR)以及动态自适应免疫粒子群(DAIPSO)结合,建立RUL预测模型... 锂离子电池应用时表现出的时变、动态、非线性等特征,以及容量再生现象,导致传统模型对锂离子电池剩余使用寿命(RUL)预测的准确性低,该文将变分模态分解(VMD)和高斯过程回归(GPR)以及动态自适应免疫粒子群(DAIPSO)结合,建立RUL预测模型。首先利用等压降放电时间分析法,提取健康因子,利用VMD对其进行分解处理,挖掘数据内在信息,降低数据复杂度,并针对不同分量,利用不同协方差函数建立GPR预测模型,有效捕获了数据的长期下降趋势和短期再生波动。利用DAIPSO算法优化GPR模型,实现核函数超参数的优化,建立了更准确的退化关系模型,最终实现剩余使用寿命的准确预测,以及不确定性表征。最后利用NASA电池数据进行验证,离线预测结果表明所提方法具有较高预测精度和泛化适应能力。 展开更多
关键词 锂离子电池 剩余使用寿命 变分模态分解 高斯过程回归 动态自适应免疫粒子群
下载PDF
Hybrid anti-prematuration optimization algorithm
14
作者 Qiaoling Wang Xiaozhi Gao +1 位作者 Changhong Wang Furong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期503-508,共6页
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici... Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem. 展开更多
关键词 hybrid optimization algorithm artificial immune system(AIS) particle swarm optimization(PSO) clonal selection anti-prematuration.
下载PDF
基于人工免疫-改进粒子群优化算法的机械臂轨迹规划研究
15
作者 郭鑫 李立君 《机械传动》 北大核心 2024年第5期33-40,共8页
焊接机器人运动轨迹复杂、控制精度要求高。提出了一种满足多目标约束的轨迹规划方法。针对机器人轨迹平滑性要求,以5次非均匀有理B样条(Non-Uniform Rational B-Splines,NURBS)曲线为基础,对笛卡儿空间路径点进行参数化表达;根据工业... 焊接机器人运动轨迹复杂、控制精度要求高。提出了一种满足多目标约束的轨迹规划方法。针对机器人轨迹平滑性要求,以5次非均匀有理B样条(Non-Uniform Rational B-Splines,NURBS)曲线为基础,对笛卡儿空间路径点进行参数化表达;根据工业机器人路径约束及工况需求,选取时间、能耗、跃度3个运动学指标作为目标优化函数,采用人工免疫双态粒子群进行轨迹优化;为了平衡粒子“探索”与“利用”,增加双模态模型,引入人工免疫系统,提升了粒子多样性与后期收敛能力;根据Pareto解集得到满足约束的焊接机器人各关节最优轨迹,通过Matlab仿真证明了方法的有效性;最后,针对空间相贯曲线焊缝进行了焊接试验。结果显示,规划的轨迹符合实际工程需求。 展开更多
关键词 焊接机器人 5次NURBS曲线 路径规划 免疫粒子群算法 多目标优化
下载PDF
自适应免疫粒子群算法在光伏MPPT中的应用
16
作者 李练兵 王兰超 +2 位作者 朱乐 韩琪琪 杨少波 《电源技术》 CAS 北大核心 2024年第4期749-754,共6页
光伏阵列在局部遮阴条件下,其P-U特性曲线呈多峰特性,传统的最大功率点跟踪(MPPT)算法容易陷入局部最优,而无法追踪到最大功率点。粒子群(PSO)算法适用于复杂多极值的寻优问题,因而在多峰值MPPT中得到广泛应用。针对粒子群算法寻优过程... 光伏阵列在局部遮阴条件下,其P-U特性曲线呈多峰特性,传统的最大功率点跟踪(MPPT)算法容易陷入局部最优,而无法追踪到最大功率点。粒子群(PSO)算法适用于复杂多极值的寻优问题,因而在多峰值MPPT中得到广泛应用。针对粒子群算法寻优过程中易早熟收敛至局部最优、迭代后期收敛速度慢以及精度低等问题,提出了一种自适应免疫粒子群算法。该算法对惯性权重和学习因子进行自适应调整,并且与免疫算法相结合。仿真结果表明:该算法在静态局部遮阴以及动态局部遮阴条件下,均能追踪到最大功率点,并且收敛速度更快,精度更高,稳定性更好。 展开更多
关键词 光伏电池 局部遮阴 MPPT 自适应免疫粒子群算法
下载PDF
Short-term Load Prediction of Integrated Energy System with Wavelet Neural Network Model Based on Improved Particle Swarm Optimization and Chaos Optimization Algorithm 被引量:15
17
作者 Leijiao Ge Yuanliang Li +2 位作者 Jun Yan Yuqian Wang Na Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1490-1499,共10页
To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)mo... To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)model optimized by the improved particle swarm optimization(IPSO)and chaos optimization algorithm(COA)for short-term load prediction of IES.The proposed model overcomes the disadvantages of the slow convergence and the tendency to fall into the local optimum in traditional WNN models.First,the Pearson correlation coefficient is employed to select the key influencing factors of load prediction.Then,the traditional particle swarm optimization(PSO)is improved by the dynamic particle inertia weight.To jump out of the local optimum,the COA is employed to search for individual optimal particles in IPSO.In the iteration,the parameters of WNN are continually optimized by IPSO-COA.Meanwhile,the feedback link is added to the proposed model,where the output error is adopted to modify the prediction results.Finally,the proposed model is employed for load prediction.The experimental simulation verifies that the proposed model significantly improves the prediction accuracy and operation efficiency compared with the artificial neural network(ANN),WNN,and PSO-WNN. 展开更多
关键词 Integrated energy system(IES) load prediction chaos optimization algorithm(COA) improved particle swarm optimization(ipso) Pearson correlation coefficient wavelet neural network(WNN)
原文传递
经验小波变换和改进S变换结合的电能质量检测与识别方法
18
作者 李宁 王茹月 朱龙辉 《电气传动》 2024年第5期26-33,72,共9页
为分析不确定干扰因素影响下的实际电力网络电能质量问题,提出一种经验小波变换(EWT)和改进S变换相结合的电能质量检测与识别方法。该方法一方面利用EWT联合归一化直接正交(NDQ)算法和奇异值分解(SVD)算法准确提取调幅-调频分量的频率... 为分析不确定干扰因素影响下的实际电力网络电能质量问题,提出一种经验小波变换(EWT)和改进S变换相结合的电能质量检测与识别方法。该方法一方面利用EWT联合归一化直接正交(NDQ)算法和奇异值分解(SVD)算法准确提取调幅-调频分量的频率、幅值和时间参数,另一方面考虑到EWT算法在高噪声环境下瞬时幅值波动的问题,引入改进S变换提取高噪声干扰下的电能质量扰动时频信息,最后,基于EWT和改进S变换提取的扰动特征向量,利用基于改进粒子群优化算法(IPSO)优化支持向量机(SVM)的电能质量扰动识别分类器实现扰动类型的精确识别。仿真和实验表明所提方法在复合扰动识别分类时平均识别准确率为93.23%,且能够准确识别4种实测扰动信号。 展开更多
关键词 电能质量 扰动检测识别 经验小波变换 快速多分辨率S变换 改进粒子群优化 支持向量机
下载PDF
Voltage Security Operation Region Calculation Based on Improved Particle Swarm Optimization and Recursive Least Square Hybrid Algorithm 被引量:5
19
作者 Saniye Maihemuti Weiqing Wang +1 位作者 Haiyun Wang Jiahui Wu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第1期138-147,共10页
Large-scale voltage collapse incidences, which result in power outages over large regions and extensive economic losses, are presently common occurrences worldwide. To avoid voltage collapse and operate more safely an... Large-scale voltage collapse incidences, which result in power outages over large regions and extensive economic losses, are presently common occurrences worldwide. To avoid voltage collapse and operate more safely and reliably, it is necessary to analyze the voltage security operation region(VSOR) of power systems, which has become a topic of increasing interest lately. In this paper, a novel improved particle swarm optimization and recursive least square(IPSO-RLS) hybrid algorithm is proposed to determine the VSOR of a power system. Also, stability analysis on the proposed algorithm is carried out by analyzing the errors and convergence accuracy of the obtained results. Firstly, the voltage stability and VSOR-surface of a power system are analyzed in this paper. Secondly, the two algorithms,namely IPSO and RLS algorithms, are studied individually.Based on this understanding, a novel IPSO-RLS hybrid algorithm is proposed to optimize the active and reactive power,and the voltage allowed to identify the VSOR-surface accurately. Finally, the proposed algorithm is validated by using a simulation case study on three wind farm regions of actual Hami Power Grid of China in DIg SILENT/Power Factory software.The error and accuracy of the obtained simulation results are analyzed and compared with those of the particle swarm optimization(PSO), IPSO and IPSO-RLS hybrid algorithms. 展开更多
关键词 Voltage stability renewable energy improved particle swarm optimization(ipso) recursive least square(RLS) voltage security operation region(VSOR)
原文传递
基于IPSO-LSSVM的风电功率短期预测研究 被引量:28
20
作者 王贺 胡志坚 +2 位作者 张翌晖 张子泳 张承学 《电力系统保护与控制》 EI CSCD 北大核心 2012年第24期107-112,共6页
风电功率预测的关键是预测模型的选择和模型性能的优化。选择最小二乘支持向量机(least squares support vector machine,LSSVM)作为风电功率预测模型,使用改进的粒子群算法(improved particle swarm optimization algorithm,IPSO)对影... 风电功率预测的关键是预测模型的选择和模型性能的优化。选择最小二乘支持向量机(least squares support vector machine,LSSVM)作为风电功率预测模型,使用改进的粒子群算法(improved particle swarm optimization algorithm,IPSO)对影响最小二乘支持向量机回归性能的参数进行优化。在建立了改进的粒子群算法优化最小二乘支持向量机(LSSVM)的风电功率预测模型后,运用该模型对广西某风电场进行了仿真研究。为了对比研究,同时使用前馈(back propagation,BP)神经网络模型和支持向量机(support vector machine,SVM)模型进行了预测。最后采用多种误差指标对三种模型的预测结果进行综合分析。结果表明,使用改进的粒子群算法优化最小二乘向量机(IPSO-LSSVM)的风电功率预测模型具有较高的预测精度。 展开更多
关键词 风电功率预测 改进粒子群算法 最小二乘支持向量机 ipso-LSSVM 误差分析
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部