As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of ...As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.展开更多
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca...With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method.展开更多
Quality function deployment (QFD) is a well-known customer-oriented product design methodology. Rating the final importance of customer requirements (CRs) is really a very es- sential starting point in the impleme...Quality function deployment (QFD) is a well-known customer-oriented product design methodology. Rating the final importance of customer requirements (CRs) is really a very es- sential starting point in the implementation of QFD, since it largely affects the target setting value of design requirements. This pa- per aims to propose a novel method to deal with the relative importance ratings (RIRs) of CRs problem considering customers' diversified requirements and unknown information on customers' weights, which is an indispensable process for determining the final importance ratings of CRs. First, a new concept of customer's assessment structure is proposed according to the basic idea of grey relational analysis (GRA), and then a constrained nonlinear optimization model is constructed to describe the assessment information aggregation factors of CRs considering customers' personalized and diversified requirements. Furthermore, an im- mune particle swarm optimization (IPSO) algorithm is designed to solve the model, and the weight vector of customers is obtained. Finally, a car door design example is introduced to illustrate the novel hybrid GRA-IPSO method's potential application in deter- mining the RIRs of CRs.展开更多
Masked data are the system failure data when exact component causing system failure might be unknown.In this paper,the mathematical description of general masked data was presented in software reliability engineering....Masked data are the system failure data when exact component causing system failure might be unknown.In this paper,the mathematical description of general masked data was presented in software reliability engineering.Furthermore,a general maskedbased additive non-homogeneous Poisson process(NHPP) model was considered to analyze component reliability.However,the problem of masked-based additive model lies in the difficulty of estimating parameters.The maximum likelihood estimation procedure was derived to estimate parameters.Finally,a numerical example was given to illustrate the applicability of proposed model,and the immune particle swarm optimization(IPSO) algorithm was used in maximize log-likelihood function.展开更多
基金Key R&D Program of Tianjin,China(No.20YFYSGX00060).
文摘As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.
基金supported by the National Natural Science Foundation of China(61172070,61111130122)the Innovative Research Team of Shaanxi Province(2013KCT-04)the Specialized Research Fund for the Doctoral Program of Higher Education(20126118110008)
文摘With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method.
基金supported by the Fundamental Research Funds for the Central Universities(K5051399035BDY251412+1 种基金JB150601)the Soft Science Project of Shaanxi Province(2013KRZ25)
文摘Quality function deployment (QFD) is a well-known customer-oriented product design methodology. Rating the final importance of customer requirements (CRs) is really a very es- sential starting point in the implementation of QFD, since it largely affects the target setting value of design requirements. This pa- per aims to propose a novel method to deal with the relative importance ratings (RIRs) of CRs problem considering customers' diversified requirements and unknown information on customers' weights, which is an indispensable process for determining the final importance ratings of CRs. First, a new concept of customer's assessment structure is proposed according to the basic idea of grey relational analysis (GRA), and then a constrained nonlinear optimization model is constructed to describe the assessment information aggregation factors of CRs considering customers' personalized and diversified requirements. Furthermore, an im- mune particle swarm optimization (IPSO) algorithm is designed to solve the model, and the weight vector of customers is obtained. Finally, a car door design example is introduced to illustrate the novel hybrid GRA-IPSO method's potential application in deter- mining the RIRs of CRs.
基金Technology Foundation of Guizhou Province,China(No.QianKeHeJZi[2015]2064)Scientific Research Foundation for Advanced Talents in Guizhou Institue of Technology and Science,China(No.XJGC20150106)Joint Foundation of Guizhou Province,China(No.QianKeHeLHZi[2015]7105)
文摘Masked data are the system failure data when exact component causing system failure might be unknown.In this paper,the mathematical description of general masked data was presented in software reliability engineering.Furthermore,a general maskedbased additive non-homogeneous Poisson process(NHPP) model was considered to analyze component reliability.However,the problem of masked-based additive model lies in the difficulty of estimating parameters.The maximum likelihood estimation procedure was derived to estimate parameters.Finally,a numerical example was given to illustrate the applicability of proposed model,and the immune particle swarm optimization(IPSO) algorithm was used in maximize log-likelihood function.