To dissolve the bottleneck problem of life and biomedical science in detection of biomolecules with low abundance and acquisition of ultraweak biological signals,highly sensitive analytical methods coupling with the s...To dissolve the bottleneck problem of life and biomedical science in detection of biomolecules with low abundance and acquisition of ultraweak biological signals,highly sensitive analytical methods coupling with the specificity of biological recognition events have been quickly developed by the exploring of signal amplification strategies.These strategies have extensively been introduced into the development of highly sensitive immunosensing methods by combining with highly specific immunological recognition.They can be divided into two groups.One group of strategies attempts to transfer the immunological recognition event into large number of reporter probes or signal probes for signal readout by employing nano/micro-materials as vehicles for multi-labeling and/or molecular biological amplification for increasing the abundance of the signal molecules.The other uses nanomaterials or enzyme mimics as catalytic tools/tags to obtain enhanced detection signal.This review focuses on the significant advances in design of signal amplification strategies for highly sensitive immunosensing.展开更多
基金We gratefully acknowledge the National Natural Science Foundation of China(21361162002,21635005)Priority development areas of The National Research Foundation for the Doctoral Program of Higher Education of China(20130091130005).
文摘To dissolve the bottleneck problem of life and biomedical science in detection of biomolecules with low abundance and acquisition of ultraweak biological signals,highly sensitive analytical methods coupling with the specificity of biological recognition events have been quickly developed by the exploring of signal amplification strategies.These strategies have extensively been introduced into the development of highly sensitive immunosensing methods by combining with highly specific immunological recognition.They can be divided into two groups.One group of strategies attempts to transfer the immunological recognition event into large number of reporter probes or signal probes for signal readout by employing nano/micro-materials as vehicles for multi-labeling and/or molecular biological amplification for increasing the abundance of the signal molecules.The other uses nanomaterials or enzyme mimics as catalytic tools/tags to obtain enhanced detection signal.This review focuses on the significant advances in design of signal amplification strategies for highly sensitive immunosensing.