With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how ...With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.展开更多
Cardiovascular disease remains the leading cause of mortality in women,yet it has not raised the awareness from the public.The pathogenesis of cardiovascular disease differs significantly between females and males con...Cardiovascular disease remains the leading cause of mortality in women,yet it has not raised the awareness from the public.The pathogenesis of cardiovascular disease differs significantly between females and males concerning the effect of sex hormones.Estrogen and progestogen impact cardiovascular system through genomic and non-genomic effects.Before menopause,cardiovascular protective effects of estrogens have been well described.Progestogens were often used in combination with estrogens in hormone therapy.Fluctuations in sex hormone levels,particularly estrogen deficiency,were considered the specific risk factor in women’s cardiovascular disease.However,considerable heterogeneity in the impact of hormone therapy was observed in clinical trials.The heterogeneity is likely closely associated with factors such as the initial time,administration route,dosage,and formulation of hormone therapy.This review will delve into the pathogenesis and hormone therapy,summarizing the effect of female sex hormones on hypertension,pre-eclampsia,coronary heart disease,heart failure with preserved ejection fraction,and cardiovascular risk factors specific to women.展开更多
Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on ...Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures.展开更多
This paper presents an air-coupled impact echo(IE)technique that relies on the phase spectrum of the collected data to find the frequencies corresponding to the reflections from delaminations.The proposed technique ta...This paper presents an air-coupled impact echo(IE)technique that relies on the phase spectrum of the collected data to find the frequencies corresponding to the reflections from delaminations.The proposed technique takes advantage of the fact that the IE compression wave is not a propagating wave,but it is the 1st order symmetrical(S1)mode Lamb wave at zero group velocity(S1-ZGV).Therefore,it searches the phase spectra of the data collected by multiple sensors to locate the frequency corresponding to the lowest phase difference.As a result,the technique reduces the effect of propagating waves,including the direct acoustic wave and ambient noise.It is named the Constant Phase IE(CPIE).The performance of the CPIE is experimentally compared with the regular amplitude spectrum-based IE technique and two other multisensor IE techniques.The CPIE shows a performance advantage,especially in a noisy environment.展开更多
For the maintenance of steel bridges,the mechanical properties of steel used in the bridges must be elucidated.When enough dimensions of specimens cannot be extracted from the actual members,miniaturized specimens are...For the maintenance of steel bridges,the mechanical properties of steel used in the bridges must be elucidated.When enough dimensions of specimens cannot be extracted from the actual members,miniaturized specimens are used for evaluation.In the case of the Charpy impact test,sub-and half-size specimens are specified instead of full-size specimens of which the thickness is 10 mm.The value of absorbed energy and energy transient temperature obtained by Charpy impact tests with sub-size and half-size specimens were investigated from the viewpoint of maintenance of bridges in this study.The absorbed energy was not in proportion to the thickness of specimens of steel used in the actual overage bridges.The tendency of energy transient temperature obtained by thin specimens of the overage steel differed from that of the present steel.A method for evaluating the performance against brittle fracture occurrence based on the WES3003 criterion was examined.The results show the significance of evaluation based on the energy transient temperature for reasonable maintenance of bridges.展开更多
Introduction: Seasonal Malaria Chemoprevention (SMC) aims at preventing malaria in children during the high transmission season. It has been recommended by the WHO since 2013 for children from the age of 3-59 months. ...Introduction: Seasonal Malaria Chemoprevention (SMC) aims at preventing malaria in children during the high transmission season. It has been recommended by the WHO since 2013 for children from the age of 3-59 months. However, despite the impact of this intervention, a peak in the prevalence and incidence of malaria is observed in children from the age of 5-9 years. The aim of this study is to determine from the current literature the feasibility, impact and cost-effectiveness of extending SMC to five cycles and to older children. Methods: A litterature search of PubMed/Medline, NCBI and Google scholar identified 1333 articles. After reading the titles and abstracts by two authors, 24 articles were selected and submitted for full reading. Random control studies on the extension of SMC, malaria, feasibility of SMC, impact of SMC and cost-effectiveness of SMC were selected. A total of 16 articles were included for the qualitative synthesis after excluding 8 studies. Results: Following the summary of the evidence, we conclude that the extension is feasible but will be confronted with the unavailability of older children. The intervention period coincides with field work. SMC is effective in reducing the prevalence and incidence of malaria and the parasite density in children. The financial cost of administering SMC is lower than that of treating a child suffering from malaria. Conclusion: After analysing the information, it was found that the majority of the African population supports the extension of the SMC to the number of cycles and the age group in order to alleviate the high mortality and morbidity rates among children due to malaria.展开更多
Cumulative assessment is a tool for the project developer to try and take into consideration not only their contribution to cumulative impacts but also other projects and external factors that may place their developm...Cumulative assessment is a tool for the project developer to try and take into consideration not only their contribution to cumulative impacts but also other projects and external factors that may place their developments at risk.This study assessed the cumulative impacts of air emissions from 22 major power plants in southeast Bangladesh planned to generate 21,550 MW of electricity.It also includes anticipated growth in small to medium size industries,brickfields,highway traffic,inland water transport,transhippers,jetty,and vessel transports used for transporting fuel resources for these power plants.A 50 km by 50 km airshed is considered for air quality modeling.Cumulative analysis indicates that predicted MGLCs(Maximum Ground Level Concentrations)of NO2 and CO are complying with both Bangladesh NAAQS(National Ambient Air Quality Standards)and WBG(World Bank Group)Guidelines.The daily average MGLC of PM_(2.5)(62.45µg/m^(3))from all sources complies with NAAQS,however,exceeds the WBG Guidelines.Annual PM_(2.5) concentration(15.45µg/m^(3))exceeds NAAQS and WBG Guidelines.The PM10 concentration complies with the NAAQS for both 24-hour and annual averaging times.Annual average concentration(23.12µg/m^(3))exceeds WBG Guidelines.Daily average SO2 concentration(102.49µg/m^(3))complies with the NAAQS however,it exceeds the WBG guideline values.High concentrations of PM_(2.5) and SO2 are due to the contribution of transboundary emissions and secondary pollutants in the atmosphere.This dispersion modeling outcome can be used by the policymakers for the pollution reduction strategy.展开更多
Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion wa...Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate.展开更多
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul...The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.展开更多
Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon ...Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.展开更多
Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distribut...Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region.展开更多
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su...Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.展开更多
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well...The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions.展开更多
The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the p...The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the present work, an effective method to calculate the EIE cross sections of an atom/ion in the whole energy region is presented. We use the EIE cross sections of helium as an illustration example. The optical forbidden 1^(1)S–n^(1)S(n = 2–4) and optical allowed 1^(1)S–n^(1)P(n = 2–4) excitation cross sections are calculated in the whole energy region using the scheme that combines the partial wave R-matrix method and the first Born approximation. The calculated cross sections are in good agreement with the available experimental measurements. Based on these accurate cross sections of our calculation, we find that the ratios between the accurate cross sections and Born cross sections are nearly the same for different excitation final states in the same channel. According to this interesting property, a universal correction function is proposed and given to calculate the accurate EIE cross sections with the same computational efforts of the widely used Born cross sections,which should be very useful in the related application fields. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00142.展开更多
This research assessed the environmental impact of cement silos emission on the existing concrete batching facilities in M35-Mussafah, Abu Dhabi, United Arab Emirates. These assessments were conducted using an air qua...This research assessed the environmental impact of cement silos emission on the existing concrete batching facilities in M35-Mussafah, Abu Dhabi, United Arab Emirates. These assessments were conducted using an air quality dispersion model (AERMOD) to predict the ambient concentration of Portland Cement particulate matter less than 10 microns (PM<sub>10</sub>) emitted to the atmosphere during loading and unloading activities from 176 silos located in 25 concrete batching facilities. AERMOD was applied to simulate and describe the dispersion of PM<sub>10</sub> released from the cement silos into the air. Simulations were carried out for PM<sub>10</sub> emissions on controlled and uncontrolled cement silos scenarios. Results showed an incremental negative impact on air quality and public health from uncontrolled silos emissions and estimated that the uncontrolled PM<sub>10</sub> emission sources contribute to air pollution by 528958.32 kg/Year. The modeling comparison between the controlled and uncontrolled silos shows that the highest annual average concentration from controlled cement silos is 0.065 μg/m<sup>3</sup>, and the highest daily emission value is 0.6 μg/m<sup>3</sup>;both values are negligible and will not lead to significant air quality impact in the entire study domain. However, the uncontrolled cement silos’ highest annual average concentration value is 328.08 μg/m<sup>3</sup>. The highest daily emission average value was 1250.09 μg/m<sup>3</sup>;this might cause a significant air pollution quality impact and health effects on the public and workers. The short-term and long-term average PM<sub>10</sub> pollutant concentrations at these receptors predicted by the air dispersion model are discussed for both scenarios and compared with local and international air quality standards and guidelines.展开更多
Individuals,local communities,environmental associations,private organizations,and public representatives and bodies may all be aggrieved by environmental problems concerning poor air quality,illegal waste disposal,wa...Individuals,local communities,environmental associations,private organizations,and public representatives and bodies may all be aggrieved by environmental problems concerning poor air quality,illegal waste disposal,water contamination,and general pollution.Environmental complaints represent the expressions of dissatisfaction with these issues.As the timeconsuming of managing a large number of complaints,text mining may be useful for automatically extracting information on stakeholder priorities and concerns.The paper used text mining and semantic network analysis to crawl relevant keywords about environmental complaints from two online complaint submission systems:online claim submission system of Regional Agency for Prevention,Environment and Energy(Arpae)(“Contact Arpae”);and Arpae's internal platform for environmental pollution(“Environmental incident reporting portal”)in the Emilia-Romagna Region,Italy.We evaluated the total of 2477 records and classified this information based on the claim topic(air pollution,water pollution,noise pollution,waste,odor,soil,weather-climate,sea-coast,and electromagnetic radiation)and geographical distribution.Then,this paper used natural language processing to extract keywords from the dataset,and classified keywords ranking higher in Term Frequency-Inverse Document Frequency(TF-IDF)based on the driver,pressure,state,impact,and response(DPSIR)framework.This study provided a systemic approach to understanding the interaction between people and environment in different geographical contexts and builds sustainable and healthy communities.The results showed that most complaints are from the public and associated with air pollution and odor.Factories(particularly foundries and ceramic industries)and farms are identified as the drivers of environmental issues.Citizen believed that environmental issues mainly affect human well-being.Moreover,the keywords of“odor”,“report”,“request”,“presence”,“municipality”,and“hours”were the most influential and meaningful concepts,as demonstrated by their high degree and betweenness centrality values.Keywords connecting odor(classified as impacts)and air pollution(classified as state)were the most important(such as“odor-burnt plastic”and“odor-acrid”).Complainants perceived odor annoyance as a primary environmental concern,possibly related to two main drivers:“odor-factory”and“odorsfarms”.The proposed approach has several theoretical and practical implications:text mining may quickly and efficiently address citizen needs,providing the basis toward automating(even partially)the complaint process;and the DPSIR framework might support the planning and organization of information and the identification of stakeholder concerns and priorities,as well as metrics and indicators for their assessment.Therefore,integration of the DPSIR framework with the text mining of environmental complaints might generate a comprehensive environmental knowledge base as a prerequisite for a wider exploitation of analysis to support decision-making processes and environmental management activities.展开更多
Sand excavations in river beds have compromised the safety of several bridges in recent years. Large scale sand mining from river beds is now common in the Niger Delta, due to the necessity of reclaiming land for deve...Sand excavations in river beds have compromised the safety of several bridges in recent years. Large scale sand mining from river beds is now common in the Niger Delta, due to the necessity of reclaiming land for development purposes and to meet construction needs in the region. There is currently no regulation as to where sand can be mined in river channels because of the lack of adequate understanding of the risks to coastal infrastructure involved with its abstraction. The phenomenon of bridge Abutment and bank failure induced by excessive dredging of sand river bed is considered. Two types of instability were distinguished, one relating to the equilibrium slope of the riverbed and the other riverbank instability. An empirical relationship in the form X<sub>s</sub> = 3Htan(90 - α) has been developed through analysis, supported by examples that a minimum distance of 94 m (for sand river beds) from a bridge should be observed for sand abstraction in order to guaranty the safety of bridge foundation. For clay riverbeds, slightly shorter minimum distances can be considered safe. The study further shows that the capacity of sand borrowing in river channels to generate bank instability is dependent on the composition and stratigraphy beneath the river bed.展开更多
基金This work was supported by the Qinchuangyuan Project of Shaanxi Province,China(QCYRCXM-2022-145)the Major Project of the Key Research Base of Humanities and Social Sciences of the Ministry of Education,China(22JJD790052)+1 种基金the Chinese Universities Scientific Fund(Z1010422003)the National Natural Science Foundation of China(72373117).
文摘With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.
基金supported by the National Key Research and Development Program of China (No.2022YFC-3602500)
文摘Cardiovascular disease remains the leading cause of mortality in women,yet it has not raised the awareness from the public.The pathogenesis of cardiovascular disease differs significantly between females and males concerning the effect of sex hormones.Estrogen and progestogen impact cardiovascular system through genomic and non-genomic effects.Before menopause,cardiovascular protective effects of estrogens have been well described.Progestogens were often used in combination with estrogens in hormone therapy.Fluctuations in sex hormone levels,particularly estrogen deficiency,were considered the specific risk factor in women’s cardiovascular disease.However,considerable heterogeneity in the impact of hormone therapy was observed in clinical trials.The heterogeneity is likely closely associated with factors such as the initial time,administration route,dosage,and formulation of hormone therapy.This review will delve into the pathogenesis and hormone therapy,summarizing the effect of female sex hormones on hypertension,pre-eclampsia,coronary heart disease,heart failure with preserved ejection fraction,and cardiovascular risk factors specific to women.
基金supported by the opening fund of State Key Laboratory of Coastal and Offshore Engineering at Dalian University of Technology(No.LP2310)the opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection at Chengdu University of Technology(No.SKLGP2023K001)+2 种基金the Shandong Provincial Key Laboratory of Ocean Engineering with grant at Ocean University of China(No.kloe200301)the National Natural Science Foundation of China(Nos.42022052,42077272 and 52108337)the Science and Technology Innovation Serve Project of Wenzhou Association for Science and Technology(No.KJFW65).
文摘Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures.
文摘This paper presents an air-coupled impact echo(IE)technique that relies on the phase spectrum of the collected data to find the frequencies corresponding to the reflections from delaminations.The proposed technique takes advantage of the fact that the IE compression wave is not a propagating wave,but it is the 1st order symmetrical(S1)mode Lamb wave at zero group velocity(S1-ZGV).Therefore,it searches the phase spectra of the data collected by multiple sensors to locate the frequency corresponding to the lowest phase difference.As a result,the technique reduces the effect of propagating waves,including the direct acoustic wave and ambient noise.It is named the Constant Phase IE(CPIE).The performance of the CPIE is experimentally compared with the regular amplitude spectrum-based IE technique and two other multisensor IE techniques.The CPIE shows a performance advantage,especially in a noisy environment.
文摘For the maintenance of steel bridges,the mechanical properties of steel used in the bridges must be elucidated.When enough dimensions of specimens cannot be extracted from the actual members,miniaturized specimens are used for evaluation.In the case of the Charpy impact test,sub-and half-size specimens are specified instead of full-size specimens of which the thickness is 10 mm.The value of absorbed energy and energy transient temperature obtained by Charpy impact tests with sub-size and half-size specimens were investigated from the viewpoint of maintenance of bridges in this study.The absorbed energy was not in proportion to the thickness of specimens of steel used in the actual overage bridges.The tendency of energy transient temperature obtained by thin specimens of the overage steel differed from that of the present steel.A method for evaluating the performance against brittle fracture occurrence based on the WES3003 criterion was examined.The results show the significance of evaluation based on the energy transient temperature for reasonable maintenance of bridges.
文摘Introduction: Seasonal Malaria Chemoprevention (SMC) aims at preventing malaria in children during the high transmission season. It has been recommended by the WHO since 2013 for children from the age of 3-59 months. However, despite the impact of this intervention, a peak in the prevalence and incidence of malaria is observed in children from the age of 5-9 years. The aim of this study is to determine from the current literature the feasibility, impact and cost-effectiveness of extending SMC to five cycles and to older children. Methods: A litterature search of PubMed/Medline, NCBI and Google scholar identified 1333 articles. After reading the titles and abstracts by two authors, 24 articles were selected and submitted for full reading. Random control studies on the extension of SMC, malaria, feasibility of SMC, impact of SMC and cost-effectiveness of SMC were selected. A total of 16 articles were included for the qualitative synthesis after excluding 8 studies. Results: Following the summary of the evidence, we conclude that the extension is feasible but will be confronted with the unavailability of older children. The intervention period coincides with field work. SMC is effective in reducing the prevalence and incidence of malaria and the parasite density in children. The financial cost of administering SMC is lower than that of treating a child suffering from malaria. Conclusion: After analysing the information, it was found that the majority of the African population supports the extension of the SMC to the number of cycles and the age group in order to alleviate the high mortality and morbidity rates among children due to malaria.
文摘Cumulative assessment is a tool for the project developer to try and take into consideration not only their contribution to cumulative impacts but also other projects and external factors that may place their developments at risk.This study assessed the cumulative impacts of air emissions from 22 major power plants in southeast Bangladesh planned to generate 21,550 MW of electricity.It also includes anticipated growth in small to medium size industries,brickfields,highway traffic,inland water transport,transhippers,jetty,and vessel transports used for transporting fuel resources for these power plants.A 50 km by 50 km airshed is considered for air quality modeling.Cumulative analysis indicates that predicted MGLCs(Maximum Ground Level Concentrations)of NO2 and CO are complying with both Bangladesh NAAQS(National Ambient Air Quality Standards)and WBG(World Bank Group)Guidelines.The daily average MGLC of PM_(2.5)(62.45µg/m^(3))from all sources complies with NAAQS,however,exceeds the WBG Guidelines.Annual PM_(2.5) concentration(15.45µg/m^(3))exceeds NAAQS and WBG Guidelines.The PM10 concentration complies with the NAAQS for both 24-hour and annual averaging times.Annual average concentration(23.12µg/m^(3))exceeds WBG Guidelines.Daily average SO2 concentration(102.49µg/m^(3))complies with the NAAQS however,it exceeds the WBG guideline values.High concentrations of PM_(2.5) and SO2 are due to the contribution of transboundary emissions and secondary pollutants in the atmosphere.This dispersion modeling outcome can be used by the policymakers for the pollution reduction strategy.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC1127)the Fundamental Research Funds for the Central Universities(No.2682023CX075).
文摘Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate.
基金the National Natural Science Foundation of China(Grant Nos.62227901,12202068)the Civil Aerospace Pre-research Project(Grant No.D020304).
文摘The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.
文摘Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.
文摘Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region.
基金financially supported by the National Key Research and Development Program of China(No.2022YFC2905004)the China Postdoctoral Science Foundation(No.2023M742134)。
文摘Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
基金financial support from the National Key Research and Development Program of China(2019YFC0605502)the National Natural Science Foundation of China(42302156)+1 种基金the Major Projects of Petro China Science and Technology Fund(2021DJ0206)the Natural Science Foundation of China University of Petroleum(22CX06046A)。
文摘The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12241410)。
文摘The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the present work, an effective method to calculate the EIE cross sections of an atom/ion in the whole energy region is presented. We use the EIE cross sections of helium as an illustration example. The optical forbidden 1^(1)S–n^(1)S(n = 2–4) and optical allowed 1^(1)S–n^(1)P(n = 2–4) excitation cross sections are calculated in the whole energy region using the scheme that combines the partial wave R-matrix method and the first Born approximation. The calculated cross sections are in good agreement with the available experimental measurements. Based on these accurate cross sections of our calculation, we find that the ratios between the accurate cross sections and Born cross sections are nearly the same for different excitation final states in the same channel. According to this interesting property, a universal correction function is proposed and given to calculate the accurate EIE cross sections with the same computational efforts of the widely used Born cross sections,which should be very useful in the related application fields. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00142.
文摘This research assessed the environmental impact of cement silos emission on the existing concrete batching facilities in M35-Mussafah, Abu Dhabi, United Arab Emirates. These assessments were conducted using an air quality dispersion model (AERMOD) to predict the ambient concentration of Portland Cement particulate matter less than 10 microns (PM<sub>10</sub>) emitted to the atmosphere during loading and unloading activities from 176 silos located in 25 concrete batching facilities. AERMOD was applied to simulate and describe the dispersion of PM<sub>10</sub> released from the cement silos into the air. Simulations were carried out for PM<sub>10</sub> emissions on controlled and uncontrolled cement silos scenarios. Results showed an incremental negative impact on air quality and public health from uncontrolled silos emissions and estimated that the uncontrolled PM<sub>10</sub> emission sources contribute to air pollution by 528958.32 kg/Year. The modeling comparison between the controlled and uncontrolled silos shows that the highest annual average concentration from controlled cement silos is 0.065 μg/m<sup>3</sup>, and the highest daily emission value is 0.6 μg/m<sup>3</sup>;both values are negligible and will not lead to significant air quality impact in the entire study domain. However, the uncontrolled cement silos’ highest annual average concentration value is 328.08 μg/m<sup>3</sup>. The highest daily emission average value was 1250.09 μg/m<sup>3</sup>;this might cause a significant air pollution quality impact and health effects on the public and workers. The short-term and long-term average PM<sub>10</sub> pollutant concentrations at these receptors predicted by the air dispersion model are discussed for both scenarios and compared with local and international air quality standards and guidelines.
文摘Individuals,local communities,environmental associations,private organizations,and public representatives and bodies may all be aggrieved by environmental problems concerning poor air quality,illegal waste disposal,water contamination,and general pollution.Environmental complaints represent the expressions of dissatisfaction with these issues.As the timeconsuming of managing a large number of complaints,text mining may be useful for automatically extracting information on stakeholder priorities and concerns.The paper used text mining and semantic network analysis to crawl relevant keywords about environmental complaints from two online complaint submission systems:online claim submission system of Regional Agency for Prevention,Environment and Energy(Arpae)(“Contact Arpae”);and Arpae's internal platform for environmental pollution(“Environmental incident reporting portal”)in the Emilia-Romagna Region,Italy.We evaluated the total of 2477 records and classified this information based on the claim topic(air pollution,water pollution,noise pollution,waste,odor,soil,weather-climate,sea-coast,and electromagnetic radiation)and geographical distribution.Then,this paper used natural language processing to extract keywords from the dataset,and classified keywords ranking higher in Term Frequency-Inverse Document Frequency(TF-IDF)based on the driver,pressure,state,impact,and response(DPSIR)framework.This study provided a systemic approach to understanding the interaction between people and environment in different geographical contexts and builds sustainable and healthy communities.The results showed that most complaints are from the public and associated with air pollution and odor.Factories(particularly foundries and ceramic industries)and farms are identified as the drivers of environmental issues.Citizen believed that environmental issues mainly affect human well-being.Moreover,the keywords of“odor”,“report”,“request”,“presence”,“municipality”,and“hours”were the most influential and meaningful concepts,as demonstrated by their high degree and betweenness centrality values.Keywords connecting odor(classified as impacts)and air pollution(classified as state)were the most important(such as“odor-burnt plastic”and“odor-acrid”).Complainants perceived odor annoyance as a primary environmental concern,possibly related to two main drivers:“odor-factory”and“odorsfarms”.The proposed approach has several theoretical and practical implications:text mining may quickly and efficiently address citizen needs,providing the basis toward automating(even partially)the complaint process;and the DPSIR framework might support the planning and organization of information and the identification of stakeholder concerns and priorities,as well as metrics and indicators for their assessment.Therefore,integration of the DPSIR framework with the text mining of environmental complaints might generate a comprehensive environmental knowledge base as a prerequisite for a wider exploitation of analysis to support decision-making processes and environmental management activities.
文摘Sand excavations in river beds have compromised the safety of several bridges in recent years. Large scale sand mining from river beds is now common in the Niger Delta, due to the necessity of reclaiming land for development purposes and to meet construction needs in the region. There is currently no regulation as to where sand can be mined in river channels because of the lack of adequate understanding of the risks to coastal infrastructure involved with its abstraction. The phenomenon of bridge Abutment and bank failure induced by excessive dredging of sand river bed is considered. Two types of instability were distinguished, one relating to the equilibrium slope of the riverbed and the other riverbank instability. An empirical relationship in the form X<sub>s</sub> = 3Htan(90 - α) has been developed through analysis, supported by examples that a minimum distance of 94 m (for sand river beds) from a bridge should be observed for sand abstraction in order to guaranty the safety of bridge foundation. For clay riverbeds, slightly shorter minimum distances can be considered safe. The study further shows that the capacity of sand borrowing in river channels to generate bank instability is dependent on the composition and stratigraphy beneath the river bed.