Laser shock peening(LSP) is a widely used surface treatment technique that can effectively improve the fatigue life and impact toughness of metal parts.Cr5Mo1 V steel exhibits a gradient hardened layer after a LSP p...Laser shock peening(LSP) is a widely used surface treatment technique that can effectively improve the fatigue life and impact toughness of metal parts.Cr5Mo1 V steel exhibits a gradient hardened layer after a LSP process.A new method is proposed to estimate the impact toughness that considers the changing mechanical properties in the gradient hardened layer.Assuming a linearly gradient distribution of impact toughness,the parameters controlling the impact toughness of the gradient hardened layer were given.The influence of laser power densities and the number of laser shots on the impact toughness were investigated.The impact toughness of the laser peened layer improves compared with an untreated specimen,and the impact toughness increases with the laser power densities and decreases with the number of laser shots.Through the fracture morphology analysis by a scanning electron microscope,we established that the Cr5Mo1 V steel was fractured by the cleavage fracture mechanism combined with a few dimples.The increase in the impact toughness of the material after LSP is observed because of the decreased dimension and increased fraction of the cleavage fracture in the gradient hardened layer.展开更多
This paper analyzes the dynamic magnetoelectroelastic behavior induced by a pennyshaped crack in a magnetoelectroelastic layer. The crack surfaces are subjected to only radial shear impact loading. The Laplace and Han...This paper analyzes the dynamic magnetoelectroelastic behavior induced by a pennyshaped crack in a magnetoelectroelastic layer. The crack surfaces are subjected to only radial shear impact loading. The Laplace and Hankel transform techniques are employed to reduce the problem to solving a Fredholm integral equation. The dynamic stress intensity factor is obtained and numerically calculated for different layer heights. And the corresponding static solution is given by simple analysis. It is seen that the dynamic stress intensity factor for cracks in a magnetoelectroelastic layer has the same expression as that in a purely elastic material. And the influences of layer height on both the dynamic and static stress intensity factors are insignificant as h/a 〉 2.展开更多
This paper presents the effect of thickness of Buffer layer on the safety of cut-and-cover tunnel under the given magnitude and height of rockfall, and the limit load of the structure. To establish calculating models ...This paper presents the effect of thickness of Buffer layer on the safety of cut-and-cover tunnel under the given magnitude and height of rockfall, and the limit load of the structure. To establish calculating models of rockfall in different conditions, the dynamics of the fall down to the surface of the slope is taken into account and the exterior characteristics of the rockfall is analyzed. We have derived the formula for calculating velocity of rocks before and after collision, calculated the impact load upon the structures below and the limit load, and compared the impact force and limit load to judge the safety of the structure. Finally, the validity of models is approved by the safety evaluation of cut-and-cover tunnel in the mouth of Heshang Mountain in Nandan County.展开更多
In this paper a numerical investigation on the non-Newtonian flow problem is conducted, in order to shed further light on the mathematical and virtual test methods in the auto-crash safety analysis. The accurate mathe...In this paper a numerical investigation on the non-Newtonian flow problem is conducted, in order to shed further light on the mathematical and virtual test methods in the auto-crash safety analysis. The accurate mathematical prediction would supply ultimate research tool for the passive safety analysis in such a scale.展开更多
The six largest known impact craters of the last 250 Myr(≥70 km in diameter),which are capable of causing significant environmental damage,coincide with four times of recognized extinction events at 36(with 2 craters...The six largest known impact craters of the last 250 Myr(≥70 km in diameter),which are capable of causing significant environmental damage,coincide with four times of recognized extinction events at 36(with 2 craters),66,and 145 Myr ago,and possibly with two provisional extinction events at 168 and215 Myr ago.These impact cratering events are accompanied by layers in the geologic record interpreted as impact ejecta.Chance occurrences of impacts and extinctions can be rejected at confidence levels of99.96%(for 4 impact/extinctions)to 99.99%(for 6 impact/extinctions).These results argue that several extinction events over the last 250 Myr may be related to the effects of large-body impacts.展开更多
Using self-made impact fatigue test instruments and related analytic devices,the mechanical components with laser cladding layer have been attempted. It is found that, onrepeated impact force, several failure modes of...Using self-made impact fatigue test instruments and related analytic devices,the mechanical components with laser cladding layer have been attempted. It is found that, onrepeated impact force, several failure modes of the components include the surface cracks, surfaceplastic deformation, corrosive pitting and coat collapse, etc. The paper reported the test methodand initial analysis conclusions about the unique failure characteristics of the mechanicalcomponents on repeated impact load.展开更多
Ni modified layer is prepared on the surface of pure titanium by plasma surface alloying technique. Surface appearance, micro-structure morphology, composition distribution, phase structure and microhardness of Ni mod...Ni modified layer is prepared on the surface of pure titanium by plasma surface alloying technique. Surface appearance, micro-structure morphology, composition distribution, phase structure and microhardness of Ni modified layer are analyzed. Tribological performance and fatigue behaviors of Ni modified layer of pure titanium are observed using Pin-on-disc tribometer and repeated impact test. The results indicate that the surface mean Ni concentration of Ni modified layer is nearly 18% which is composed of TiNi, Ti2Ni and Ti phase. The maximum surface microhardness of Ni modified layer is approximately 580 HV which is almost two-fold of the hardness of the substrate. The wear resistance of Ni modified layer is improved obviously. The wear mechanism of Ni modified layer shows slight abrasion wearing, while pure titanium is abrasion and adhesion wearing. Ni modified layer presents better impact fatigue strength.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11002150,11332011,and 11402277)the Basic Research Equipment Project of the Chinese Academy of Sciences (YZ200930) for financia support
文摘Laser shock peening(LSP) is a widely used surface treatment technique that can effectively improve the fatigue life and impact toughness of metal parts.Cr5Mo1 V steel exhibits a gradient hardened layer after a LSP process.A new method is proposed to estimate the impact toughness that considers the changing mechanical properties in the gradient hardened layer.Assuming a linearly gradient distribution of impact toughness,the parameters controlling the impact toughness of the gradient hardened layer were given.The influence of laser power densities and the number of laser shots on the impact toughness were investigated.The impact toughness of the laser peened layer improves compared with an untreated specimen,and the impact toughness increases with the laser power densities and decreases with the number of laser shots.Through the fracture morphology analysis by a scanning electron microscope,we established that the Cr5Mo1 V steel was fractured by the cleavage fracture mechanism combined with a few dimples.The increase in the impact toughness of the material after LSP is observed because of the decreased dimension and increased fraction of the cleavage fracture in the gradient hardened layer.
基金Project supported by the National Natural Science Foundation of China(No.10772123)the Natural Science Fund of Hebei Province(No.E2006000398).
文摘This paper analyzes the dynamic magnetoelectroelastic behavior induced by a pennyshaped crack in a magnetoelectroelastic layer. The crack surfaces are subjected to only radial shear impact loading. The Laplace and Hankel transform techniques are employed to reduce the problem to solving a Fredholm integral equation. The dynamic stress intensity factor is obtained and numerically calculated for different layer heights. And the corresponding static solution is given by simple analysis. It is seen that the dynamic stress intensity factor for cracks in a magnetoelectroelastic layer has the same expression as that in a purely elastic material. And the influences of layer height on both the dynamic and static stress intensity factors are insignificant as h/a 〉 2.
文摘This paper presents the effect of thickness of Buffer layer on the safety of cut-and-cover tunnel under the given magnitude and height of rockfall, and the limit load of the structure. To establish calculating models of rockfall in different conditions, the dynamics of the fall down to the surface of the slope is taken into account and the exterior characteristics of the rockfall is analyzed. We have derived the formula for calculating velocity of rocks before and after collision, calculated the impact load upon the structures below and the limit load, and compared the impact force and limit load to judge the safety of the structure. Finally, the validity of models is approved by the safety evaluation of cut-and-cover tunnel in the mouth of Heshang Mountain in Nandan County.
基金supported by the National Natural Science Foundation of China (Grant No.10871225) the Pujing Talents’ Project of Shanghai (Grant No.PJ[2006]118)the E-Institutes of Shanghai Municipal Education Commission (Grant No.E03004)
文摘In this paper a numerical investigation on the non-Newtonian flow problem is conducted, in order to shed further light on the mathematical and virtual test methods in the auto-crash safety analysis. The accurate mathematical prediction would supply ultimate research tool for the passive safety analysis in such a scale.
基金Support for Rampino came from an NYU Research Challenge grant
文摘The six largest known impact craters of the last 250 Myr(≥70 km in diameter),which are capable of causing significant environmental damage,coincide with four times of recognized extinction events at 36(with 2 craters),66,and 145 Myr ago,and possibly with two provisional extinction events at 168 and215 Myr ago.These impact cratering events are accompanied by layers in the geologic record interpreted as impact ejecta.Chance occurrences of impacts and extinctions can be rejected at confidence levels of99.96%(for 4 impact/extinctions)to 99.99%(for 6 impact/extinctions).These results argue that several extinction events over the last 250 Myr may be related to the effects of large-body impacts.
文摘Using self-made impact fatigue test instruments and related analytic devices,the mechanical components with laser cladding layer have been attempted. It is found that, onrepeated impact force, several failure modes of the components include the surface cracks, surfaceplastic deformation, corrosive pitting and coat collapse, etc. The paper reported the test methodand initial analysis conclusions about the unique failure characteristics of the mechanicalcomponents on repeated impact load.
基金Funded by the National Natural Science Foundation of China (Nos.51071106 and 50671071)the Shanxi Province Natural Science Foundation (No.2008012008-3)+1 种基金the National High-Tech Research and Development Program of China(the 863 Program)(No.2007AA03Z521)Taiyuan Science and Technology Project (No.08121030)
文摘Ni modified layer is prepared on the surface of pure titanium by plasma surface alloying technique. Surface appearance, micro-structure morphology, composition distribution, phase structure and microhardness of Ni modified layer are analyzed. Tribological performance and fatigue behaviors of Ni modified layer of pure titanium are observed using Pin-on-disc tribometer and repeated impact test. The results indicate that the surface mean Ni concentration of Ni modified layer is nearly 18% which is composed of TiNi, Ti2Ni and Ti phase. The maximum surface microhardness of Ni modified layer is approximately 580 HV which is almost two-fold of the hardness of the substrate. The wear resistance of Ni modified layer is improved obviously. The wear mechanism of Ni modified layer shows slight abrasion wearing, while pure titanium is abrasion and adhesion wearing. Ni modified layer presents better impact fatigue strength.