期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DESIGN OF DIGITAL IMPACTING FILTER IN CP-EBPSK WITH RANDOM-POLAR COMMUNICATION SYSTEM 被引量:4
1
作者 Jin Yi Wu Lenan +1 位作者 Chen Yifang Yu Jing 《Journal of Electronics(China)》 2012年第3期328-333,共6页
To solve the difficulty of designing digital impacting filter in the receiver of random-polar modulated Extended Binary Phase Shift Keying with Continuous Phase (CP-EBPSK), a design method based on Quantum-behaved Par... To solve the difficulty of designing digital impacting filter in the receiver of random-polar modulated Extended Binary Phase Shift Keying with Continuous Phase (CP-EBPSK), a design method based on Quantum-behaved Particle Swarm Optimization (QPSO) algorithm is proposed. Firstly, QPSO is introduced elaborately, and the basic flow of QPSO is also given. Then, the demodulation principle of digital impacting filter in the communication system of CP-EBPSK with random-polar is demonstrated, and QPSO is utilized to design the digital impacting filter, which also takes the effect of finite word length into consideration when implemented by hardware. Finally, the proposed method is simulated. Simulation results show that the digital impacting filter designed by new method can derive satisfied demodulation performance. 展开更多
关键词 Extended Binary Phase Shift Keying with Continuous Phase (CP-EBPSK) Digital impacting filter Quantum-behaved Particle Swarm Optimization algorithm (QPSO) DEMODULATION Effect of finite word length
下载PDF
A new detector in EBPSK communication system
2
作者 靳一 吴乐南 +1 位作者 王继武 余静 《Journal of Southeast University(English Edition)》 EI CAS 2011年第3期244-247,共4页
In order to raise the detection precision of the extended binary phase shift keying (EBPSK) receiver, a detector based on the improved particle swarm optimization algorithm (IMPSO) and the BP neural network is des... In order to raise the detection precision of the extended binary phase shift keying (EBPSK) receiver, a detector based on the improved particle swarm optimization algorithm (IMPSO) and the BP neural network is designed. First, the characteristics of EBPSK modulated signals and the special filtering mechanism of the impacting filter are demonstrated. Secondly, an improved particle swarm optimization algorithm based on the logistic chaos disturbance operator and the Cauchy mutation operator is proposed, and the EBPSK detector is designed by utilizing the IMPSO-BP neural network. Finally, the simulation of the EBPSK detector based on the MPSO-BP neural network is conducted and the result is compared with that of the adaptive threshold-based decision, the BP neural network, and the PSO-BP detector, respectively. Simulation results show that the detection performance of the EBPSK detector based on the IMPSO-BP neural network is better than those of the other three detectors. 展开更多
关键词 extended binary phase shift keying DETECTOR impacting filter logistic chaos disturbance Cauchy mutation adaptive threshold-based decision
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部