期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Simulation Analysis of Transmission-Line Impedance Transformers for Petawatt-Class Pulsed Power Accelerators
1
作者 呼义翔 孙风举 +7 位作者 黄涛 邱爱慈 丛培天 王亮平 曾江涛 李岩 张信军 雷天时 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第4期490-496,共7页
Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to ... Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to quantify the efficiencies of voltage-transport, energy- transport and power-transport for a transmission-line impedance transformer as functions of ψ (the ratio of the output impedance to the input impedance of the transformer) and Г (the ratio of the pulse width to the one-way transit time of the transformer) under a large scale of m (the coefficient of the generalized exponential impedance profile). Simulation results suggest that with the increase in Г, from 0 to ∞, the power transport efficiency first increases and then decreases. The maximum power transport efficiency can reach 90% or even higher for an exponential impedance profile (m = 1). With a consideration of dissipative loss in the dielectric and electrodes of the transformer, two representative designs of the water-insulated transformer are investigated for the next generation of petawatt-class z-pinch drivers. It is found that the dissipative losses in the electrodes are negligibly small, below 0.1%, but the dissipative loss in the water dielectric is about 1% to 4%. 展开更多
关键词 dissipative loss transmission line code (TLCODE) transport efficiency transmission line impedance transformer
下载PDF
Analysis of Transforming dq Impedances of Different Converters to A Common Reference Frame in Complex Converter Networks
2
作者 Qi Xiao Paolo Mattavelli +1 位作者 Aram Khodamoradi Fen Tang 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第4期342-350,共9页
DQ impedance-based method has been widely used to study the stability of three-phase converter systems.As the dq impedance model of each converter depends on its local dq reference frame,the dq impedance modeling of c... DQ impedance-based method has been widely used to study the stability of three-phase converter systems.As the dq impedance model of each converter depends on its local dq reference frame,the dq impedance modeling of complex converter networks gets complicated.Because the reference frames of different converters might not fully align,depending on the structure.Thus,in order to find an accurate impedance model of a complex network for stability analysis,converting the impedances of different converters into a common reference frame is required.This paper presents a comprehensive investigation on the transformation of dq impedances to a common reference frame in complex converter networks.Four different methods are introduced and analyzed in a systematic way.Moreover,a rigorous comparison among these approaches is carried out,where the method with the simplest transformation procedure is finally suggested for the modeling of complex converter networks.The performed analysis is verified by injecting two independent small-signal perturbations into the d and the q axis,and doing a point-by-point impedance measurement. 展开更多
关键词 Complex converter networks impedance transformation synchronous rotating dq frame stability analysis.
下载PDF
Optimization of Cavity Combination for 20 MA LTD-Based Accelerators
3
作者 呼义翔 邱爱慈 +7 位作者 曾正中 黄涛 孙凤举 王亮平 丛培天 曾江涛 张信军 雷天时 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第10期927-931,共5页
Based on a transmission line code, a circuit model is proposed that could serve as the basic method for the analysis of linear transformer driver (LTD)-based accelerators. By using 1 MA, 100 kV LTD cavities, the pea... Based on a transmission line code, a circuit model is proposed that could serve as the basic method for the analysis of linear transformer driver (LTD)-based accelerators. By using 1 MA, 100 kV LTD cavities, the peak load current is optimized for a total of N cavities between 500 and 1200. The simulation results suggest that, with the same number of cavities, the peak current changes obviously with the types of combinations, and the maximum change can be as large as 1.2 MA. The results also show that, for the cases considered, the optimized peak current as a function of the total number of cavities agrees with the exponential associate, and the peak current for one level LTD cannot be enhanced infinitely. Furthermore, it is found that, to obtain a 20 MA peak load current, at least 1029 LTD cavities (49 in series and 21 in parallel connection) are needed. Finally, the typical parameters of the optimized design are compared to those of the existing Z accelerator. 展开更多
关键词 linear transformer driver (LTD) impedance transformer cavities combination dynamic inductance
下载PDF
CMOS high linearity PA driver with an on-chip transformer for W-CDMA application
4
作者 付健 梅年松 +1 位作者 黄煜梅 洪志良 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第9期106-111,共6页
A fully integrated high linearity differential power amplifier driver with an on-chip transformer in a standard 0.13-μm CMOS process for W-CDMA application is presented.The transformer not only accomplishes output im... A fully integrated high linearity differential power amplifier driver with an on-chip transformer in a standard 0.13-μm CMOS process for W-CDMA application is presented.The transformer not only accomplishes output impedance matching,but also acts as a balun for converting differential signals to single-ended ones.Under a supply voltage of 3.3 V,the measured maximum power is larger than 17 dBm with a peak power efficiency of 21%.The output power at the 1-dB compression point and the power gain are 12.7 dBm and 13.2 dB,respectively. The die size is 0.91×1.12 mm;. 展开更多
关键词 CMOS PA driver on-chip transformer impedance transformation linearity efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部