The similarities and differences in inherent mechanism and characteristic frequency between the onedimensional(1D)poroelastic model and the layered White model were investigated.This investigation was conducted under ...The similarities and differences in inherent mechanism and characteristic frequency between the onedimensional(1D)poroelastic model and the layered White model were investigated.This investigation was conducted under the assumption that the rock was homogenous and isotropic at the mesoscopic scale.For the inherent mechanism,both models resulted from quasi-static flow in a slow P-wave diffusion mode,and the differences between them originated from saturated fluids and boundary conditions.On the other hand,for the characteristic frequencies of the models,the characteristic frequency of the 1D poroelastic model was first modified because the elastic constant and formula for calculating it were misused and then compared to that of the layered White model.Both of them moved towards higher frequencies with increasing permeability and decreasing viscosity and diffusion length.The differences between them were due to the diffusion length.The diffusion length for the 1D poroelastic model was determined by the sample length,whereas that for the layered White model was determined by the length of the representative elementary volume(REV).Subsequently,a numerical example was presented to demonstrate the similarities and differences between the models.Finally,published experimental data were interpreted using the 1D poroelastic model combined with the Cole-Cole model.The prediction of the combined model was in good agreement with the experimental data,thereby validating the effectiveness of the 1D poroelastic model.Furthermore,the modified characteristic frequency in our study was much closer to the experimental data than the previous prediction,validating the effectiveness of our modification of the characteristic frequency of the 1D poroelastic model.The investigation provided insight into the internal relationship between wave-induced fluid flow(WIFF)models at macroscopic and mesoscopic scales and can aid in a better understanding of the elastic modulus dispersion and attenuation caused by the WIFF at different scales.展开更多
In this study, the changes of a vacuum arc's appearance were observed and the volt-ampere characteristics of the vacuum arc at intermediate frequency were analyzed under a transverse magnetic field (TMF). The TMF a...In this study, the changes of a vacuum arc's appearance were observed and the volt-ampere characteristics of the vacuum arc at intermediate frequency were analyzed under a transverse magnetic field (TMF). The TMF and phase shift time were calculated by using the TMF contact model and the large phase shift of the magnetic field at a higher frequency was conductive to the dispersion process of residual plasma. The arc velocity was higher at 800 Hz than at 400 Hz. It can be inferred that TMF will encourage arc movement at 800 Hz. Moreover, the arc movement has an impact on the arc voltage. Because of the increasing length of the arc column with a high arc velocity, the elongated arc causes the arc voltage to increase. Specifically, the volt-ampere characteristics of the vacuum arc are divided into three stages in this paper. The higher the frequency, the greater the initial rate of rise in the arc voltage and the larger the area surrounded by arc volt-ampere characteristics. The correlations between the arc voltage and the amplitude and frequency of the current are also presented.展开更多
The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can b...The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR.展开更多
Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate.A low frequency characteristic extension for v...Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate.A low frequency characteristic extension for velocity vibration sensors is presented in this paper.The passive circuit technology,active compensation technology and the closed- cycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors.Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.展开更多
The permeation parameters have been calculated by forefathers on the basis of permeation theory by means of the Slug test (Yin, Zheng, 1992) and the restoration curves of well level. We are interested in oscillation ...The permeation parameters have been calculated by forefathers on the basis of permeation theory by means of the Slug test (Yin, Zheng, 1992) and the restoration curves of well level. We are interested in oscillation of the well level when we make Slug test. Both the permeation parameters and frequency parameters, i.e., natural period and damping coefficients of well aquifer, have been calculated on the basis of vibration theory by means of the oscillation curves. Not only this has given a new method, but also the different response of well level to seismic waves has been explained by it in theory.展开更多
The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed ...The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.展开更多
Based on a modified pseudo-rigid-body model,the frequency characteristics and sensitivity of the large-deformation compliant mechanism are studied.Firstly,the pseudo-rigid-body model under the static and kinetic condi...Based on a modified pseudo-rigid-body model,the frequency characteristics and sensitivity of the large-deformation compliant mechanism are studied.Firstly,the pseudo-rigid-body model under the static and kinetic conditions is modified to enable the modified pseudo-rigid-body model to be more suitable for the dynamic analysis of the compliant mechanism.Subsequently,based on the modified pseudo-rigid-body model,the dynamic equations of the ordinary compliant four-bar mechanism are established using the analytical mechanics.Finally,in combination with the finite element analysis software ANSYS,the frequency characteristics and sensitivity of the compliant mechanism are analyzed by taking the compliant parallel-guiding mechanism and the compliant bistable mechanism as examples.From the simulation results,the dynamic characteristics of compliant mechanism are relatively sensitive to the structure size,section parameter,and characteristic parameter of material on mechanisms.The results could provide great theoretical significance and application values for the structural optimization of compliant mechanisms,the improvement of their dynamic properties and the expansion of their application range.展开更多
Datasets of equivalent temperature of black body (TBB) and sea surface temperature (SST)ranging from 1980 to 1997 are used to diagnose and analyze the characteristics of frequency spectrum andstrength of intraseasonal...Datasets of equivalent temperature of black body (TBB) and sea surface temperature (SST)ranging from 1980 to 1997 are used to diagnose and analyze the characteristics of frequency spectrum andstrength of intraseasonal variation of convection. The relationship between the strength of intraseasonaloscillation of convection, strength of convection itself and SST in the South China Sea (SCS) is studied. It isshown that, there are distinguishable annual, interannual and interdecadal variations in both strength andfrequency spectrum of intraseasonal variation of convection in SCS. There are connections between strength ofconvection, strength of ISO1 in the summer half (s.h.) year and SST in ensuing winter half (w.h.) year in SCS.The strong (weak) convection and strong (weak) ISO1 are associated with negative (positive) bias of SST inensuing w.h. year in SCS.展开更多
The electrification of vehicles puts forward higher requirements for the power management efficiency of integrated battery management systems as the primary or sole energy supply.In this paper,an efficient adaptive mu...The electrification of vehicles puts forward higher requirements for the power management efficiency of integrated battery management systems as the primary or sole energy supply.In this paper,an efficient adaptive multi-time scale identification strategy is proposed to achieve high-fidelity modeling of complex kinetic processes inside the battery.More specifically,a second-order equivalent circuit model network considering variable characteristic frequency is constructed based on the high-frequency,medium-high-frequency,and low-frequency characteristics of the key kinetic processes.Then,two coupled sub-filters are developed based on forgetting factor recursive least squares and extended Kalman filtering methods and decoupled by the corresponding time-scale information.The coupled iterative calculation of the two sub-filter modules at different time scales is realized by the voltage response of the kinetic diffusion process.In addition,the driver of the low-frequency subalgorithm with the state of charge variation amount as the kernel is designed to realize the adaptive identification of the kinetic diffusion process parameters.Finally,the concept of dynamical parameter entropy is introduced and advocated to verify the physical meaning of the kinetic parameters.The experimental results under three operating conditions show that the mean absolute error and root-mean-square error metrics of the proposed strategy for voltage tracking can be limited to 13 and 16 mV,respectively.Additionally,from the entropy calculation results,the proposed method can reduce the dispersion of parameter identification results by a maximum of 40.72%and 70.05%,respectively,compared with the traditional fixed characteristic frequency algorithms.The proposed method paves the way for the subsequent development of adaptive state estimators and efficient embedded applications.展开更多
This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 200...This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 2008 and the extremely heavy precipitation thresholds determined for different stations by REOF, trend coefficients, linear trend, Mann-Kendall test and variance analysis. The results are shown as follows. The frequency distribution of extremely heavy precipitation is high in the middle of South China and low in the Guangdong coast and western Guangxi. There are three spatial distribution types of extremely heavy precipitation in South China. The consistent anomaly distribution is the main type. Distribution reversed between the east and the west and between the south and the north is also an important type. Extremely heavy precipitation events in South China mainly occurred in the summer-half of the year. Their frequency during this time accounts for 83.7% of the total frequency. In the 1960 s and 1980 s, extremely heavy precipitation events were less frequent while having an increasing trend from the late 1980 s. Their climatological tendency rates decrease in the central and rise in the other areas of South China, and on average the mean series also shows an upward but insignificant trend at all of the stations. South China's frequency of extremely heavy precipitation events can be divided into six major areas and each of them shows a different inter-annual trend and three of the representative stations experience abrupt changes by showing remarkable increases in terms of Mann-Kendall tests.展开更多
Based on the number of foggy days in Nanjing in December from 1980 to 2011, we analyzed the surface temperature and atmospheric circulation characteristics of foggy years and less-foggy years. Positive anomalies of th...Based on the number of foggy days in Nanjing in December from 1980 to 2011, we analyzed the surface temperature and atmospheric circulation characteristics of foggy years and less-foggy years. Positive anomalies of the Arctic Oscillation(AO) were found to weaken the East Asian trough, which is not conducive to the southward migration of cold air. Simultaneously, this atmospheric condition favors stability as a result of a high-pressure anomaly from the middle Yangtze River Delta region. A portion of La Nia events increases the amount of water vapor in the South China Sea region, so this phenomenon could provide the water vapor condition required for foggy days in Nanjing.Based on the data in December 2007, which contained the greatest number of foggy days for the years studied, the source of fog vapor in Nanjing was primarily from southern China and southwest Taiwan Island based on a synoptic scale study. The water vapor in southern China and in the southwestern flow increased, and after a period of 2-3 days,the humidity in Nanjing increased. Simultaneously, the water vapor from the southwestern of Taiwan Island was directly transported to Nanjing by the southerly wind. Therefore, these two areas are the most important sources of water vapor that results in heavy fog in Nanjing. Using the bivariate Empirical Orthogonal Function(EOF) mode on the surface temperature and precipitable water vapor, the first mode was found to reflect the seasonal variation from early winter to late winter, which reduced the surface temperature on a large scale. The second mode was found to reflect a large-scale,northward, warm and humid airflow that was accompanied by the enhancement of the subtropical high, particularly between December 15-21, which is primarily responsible for the consecutive foggy days in Nanjing.展开更多
Bias non-conservation characteristics of radio-frequency noise mechanism of 40-nm n-MOSFET are observed by modeling and measuring its drain current noise. A compact model for the drain current noise of 40-nm MOSFET is...Bias non-conservation characteristics of radio-frequency noise mechanism of 40-nm n-MOSFET are observed by modeling and measuring its drain current noise. A compact model for the drain current noise of 40-nm MOSFET is proposed through the noise analysis. This model fully describes three kinds of main physical sources that determine the noise mechanism of 40-nm MOSFET, i.e., intrinsic drain current noise, thermal noise induced by the gate parasitic resistance, and coupling thermal noise induced by substrate parasitic effect. The accuracy of the proposed model is verified by noise measurements, and the intrinsic drain current noise is proved to be the suppressed shot noise, and with the decrease of the gate voltage, the suppressed degree gradually decreases until it vanishes. The most important findings of the bias non-conservative nature of noise mechanism of 40-nm n-MOSFET are as follows.(i) In the strong inversion region, the suppressed shot noise is weakly affected by the thermal noise of gate parasitic resistance. Therefore, one can empirically model the channel excess noise as being like the suppressed shot noise.(ii) In the middle inversion region, it is almost full of shot noise.(iii) In the weak inversion region, the thermal noise is strongly frequency-dependent, which is almost controlled by the capacitive coupling of substrate parasitic resistance. Measurement results over a wide temperature range demonstrate that the thermal noise of 40-nm n-MOSFET exists in a region from the weak to strong inversion, contrary to the predictions of suppressed shot noise model only suitable for the strong inversion and middle inversion region. These new findings of the noise mechanism of 40-nm n-MOSFET are very beneficial for its applications in ultra low-voltage and low-power RF, such as novel device electronic structure optimization, integrated circuit design and process technology evaluation.展开更多
Extracting characteristic signal from a continuous signal can effectively reduce the difficulty of analyzing the running states of a single-variable nonlinear system.Whether the extracted characteristic signal can acc...Extracting characteristic signal from a continuous signal can effectively reduce the difficulty of analyzing the running states of a single-variable nonlinear system.Whether the extracted characteristic signal can accurately reflect the running states of the system is very important.In this paper, a method called automatic sampling method(ASM) for extracting characteristic signals is investigated.The complete definition is described, the effectiveness is proved theoretically, and the general formulas of the extracted characteristic signals are derived for the first time.Furthermore, typical Chua's circuit is used to accomplish a lot of experimental research on the aspect of frequency domain.The experimental results show that ASM is feasible and practical, and can automatically generate a characteristic signal with the change of the original signal.展开更多
An inductively coupled radio frequency ion source has been developed and its extraction characteristics measured. Beam current density up to 0.11 mA/ cm2 was obtained with argon at a rf discharge power of about 140 W....An inductively coupled radio frequency ion source has been developed and its extraction characteristics measured. Beam current density up to 0.11 mA/ cm2 was obtained with argon at a rf discharge power of about 140 W. The dependences of ion beam on the discharge parameters such as rf source power, gas pressure and gas flow rate was studied.展开更多
oceanographic data files on the China Seas prepared by the National Marine Data and Information Service, SOA, China and the '30-year (1953-1982) Reports of Sea Surface Monthly Mean Temperature in the East China Se...oceanographic data files on the China Seas prepared by the National Marine Data and Information Service, SOA, China and the '30-year (1953-1982) Reports of Sea Surface Monthly Mean Temperature in the East China Sea by the Meteorological Agency, Japan,' were used to calculate the digital characteristics of frequency distribution of sea and air temperature in 153 areas in the China Seas. Principal factor analysis and fuzzy cluster ISODATA were used to divide the China hydroclimatic area into three climatic zones including ten climatic regions. It is concluded that the characteristic values derived by this method may completely show the characteristics of frequency distribution of sea and air temperature in the studied area and the final division of hydroclimatic area is fully coincident with the author's former result [2].展开更多
Soil is a typical porous media and its impedance characteristic directly determines the performance of grounding system. Soil phase frequency characteristic measurements were carried out on various soil types and wate...Soil is a typical porous media and its impedance characteristic directly determines the performance of grounding system. Soil phase frequency characteristic measurements were carried out on various soil types and water content. This paper finds that the impedance angle of soil specimen presents a capacitive performance when power frequency (f) is low. As the frequency increases, soil impedance angle goes up rapidly. Furthermore the frequency characteristic while f > 1000 Hz is distinct in terms of different water content. In particular, at low moisture content, soil impedance angle would be higher than 0?, that is, the inductive component is obvious. The study result indicates that porous media possesses the unique conductivity property dif-ferent from conductor and solution. Its mechanism needs further study.展开更多
In a power system, power generation and load have frequency response characteristics, which randomly fluctuate with changes in operating status. This study investigates a probabilistic power flow method that considers...In a power system, power generation and load have frequency response characteristics, which randomly fluctuate with changes in operating status. This study investigates a probabilistic power flow method that considers the unit and load uncertainty of the static frequency characteristic. Firstly, a calculation model is established on the basis of the characteristics of the frequency modulation performance of the unit and load. Then a calculation method is developed using the concept of dynamic power flow in order to determine the probability distribution of the active power flow of each line under the occurrence of a fault in the system. In the method, Monte Carlo sampling with the semi-invariant method is applied for analysis and calculation. The IEEE-30-buses system is taken as an example to analyze the impact of different responses of units on the power flow distribution of various branches. The method discussed herein is compared with the Monte Carlo simulation method to verify its effectiveness.展开更多
The parasitic capacitance effect and its influence to the performance have been investigated in Bi-polar Junction Metal-Oxide-Semiconductor Field-Effect Transistor (BJMOSFET). The frequency characteristic equivalent c...The parasitic capacitance effect and its influence to the performance have been investigated in Bi-polar Junction Metal-Oxide-Semiconductor Field-Effect Transistor (BJMOSFET). The frequency characteristic equivalent circuit and high frequency response model of BJMOSFET have been presented. The frequency characteristic of BJMOSFET is simulated using the multi-transient analytical method and PSPICE9 simulator. The conclusions that BJMOSFET owns less total capacitance, wider frequency band, better transient charac-teristic and better frequency responses are reached by comparing with the traditional MOSFET at the same structure parameters and bias conditions. BJMOSFET, as a novel promising high frequency device, would be desired to find application in future integrated circuit.展开更多
The I-V characteristics and low frequency noises for indium zinc oxide thin film transistor are measured between 250 K and 430 K. The experimental results show that drain currents are thermally activated following the...The I-V characteristics and low frequency noises for indium zinc oxide thin film transistor are measured between 250 K and 430 K. The experimental results show that drain currents are thermally activated following the Meyer Neldel rule, which can be explained by the multiple-trapping process. Moreover, the field effect electron mobility firstly increases, and then decreases with the increase of temperature, while the threshold voltage decreases with increasing the temperature. The activation energy and the density of localized gap states are extracted. A noticeable increase in the density of localized states is observed at the higher temperatures.展开更多
We present a new digital phase lock technology to achieve the frequency control and transformation through high precision multi-cycle group synchronization between signals without the frequency transformation circuit....We present a new digital phase lock technology to achieve the frequency control and transformation through high precision multi-cycle group synchronization between signals without the frequency transformation circuit. In the case of digital sampling, the passing zero point of the phase of the controlled signal has the phase step characteristic, the phase step of the passing zero point is monotonic continuous with high resolution in the phase lock process, and using the border effect of digital fuzzy area, the gate can synchronize with the two signals, the quantization error is reduced. This technique is quite different from the existing methods of frequency transformation and frequency synthesis, the phase change characteristic between the periodic signals with different nominal is used. The phase change has the periodic phenomenon, and it has the high resolution step value. With the application of the physical law, the noise is reduced because of simplifying frequency transformation circuits, and the phase is locked with high precision. The regular phase change between frequency signals is only used for frequency measurement, and the change has evident randomness, but this randomness is greatly reduced in frequency control, and the certainty of the process result is clear. The experiment shows that the short term frequency stability can reach 10-12/s orders of magnitude.展开更多
基金supported by the National Natural Science Foundation of China (42030810,42104115)。
文摘The similarities and differences in inherent mechanism and characteristic frequency between the onedimensional(1D)poroelastic model and the layered White model were investigated.This investigation was conducted under the assumption that the rock was homogenous and isotropic at the mesoscopic scale.For the inherent mechanism,both models resulted from quasi-static flow in a slow P-wave diffusion mode,and the differences between them originated from saturated fluids and boundary conditions.On the other hand,for the characteristic frequencies of the models,the characteristic frequency of the 1D poroelastic model was first modified because the elastic constant and formula for calculating it were misused and then compared to that of the layered White model.Both of them moved towards higher frequencies with increasing permeability and decreasing viscosity and diffusion length.The differences between them were due to the diffusion length.The diffusion length for the 1D poroelastic model was determined by the sample length,whereas that for the layered White model was determined by the length of the representative elementary volume(REV).Subsequently,a numerical example was presented to demonstrate the similarities and differences between the models.Finally,published experimental data were interpreted using the 1D poroelastic model combined with the Cole-Cole model.The prediction of the combined model was in good agreement with the experimental data,thereby validating the effectiveness of the 1D poroelastic model.Furthermore,the modified characteristic frequency in our study was much closer to the experimental data than the previous prediction,validating the effectiveness of our modification of the characteristic frequency of the 1D poroelastic model.The investigation provided insight into the internal relationship between wave-induced fluid flow(WIFF)models at macroscopic and mesoscopic scales and can aid in a better understanding of the elastic modulus dispersion and attenuation caused by the WIFF at different scales.
基金supported by Special Scientific and Research Funds for Doctoral Specialty of Institution of Higher Learning (200800060004)National Natural Science Foundation of China (No. 51177004)by the Innovation foundation of BUAA for Ph.D Graduates
文摘In this study, the changes of a vacuum arc's appearance were observed and the volt-ampere characteristics of the vacuum arc at intermediate frequency were analyzed under a transverse magnetic field (TMF). The TMF and phase shift time were calculated by using the TMF contact model and the large phase shift of the magnetic field at a higher frequency was conductive to the dispersion process of residual plasma. The arc velocity was higher at 800 Hz than at 400 Hz. It can be inferred that TMF will encourage arc movement at 800 Hz. Moreover, the arc movement has an impact on the arc voltage. Because of the increasing length of the arc column with a high arc velocity, the elongated arc causes the arc voltage to increase. Specifically, the volt-ampere characteristics of the vacuum arc are divided into three stages in this paper. The higher the frequency, the greater the initial rate of rise in the arc voltage and the larger the area surrounded by arc volt-ampere characteristics. The correlations between the arc voltage and the amplitude and frequency of the current are also presented.
基金Project(51275030)supported by the National Natural Science Foundation of ChinaProject(2016JBM051)supported by the Fundamental Research Funds for the Central Universities,China
文摘The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR.
基金The Ministry of Science and Technology Special Foundation Grant No.217Harbin Important Science Technology Foundation Grant No.0014211044
文摘Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate.A low frequency characteristic extension for velocity vibration sensors is presented in this paper.The passive circuit technology,active compensation technology and the closed- cycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors.Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.
文摘The permeation parameters have been calculated by forefathers on the basis of permeation theory by means of the Slug test (Yin, Zheng, 1992) and the restoration curves of well level. We are interested in oscillation of the well level when we make Slug test. Both the permeation parameters and frequency parameters, i.e., natural period and damping coefficients of well aquifer, have been calculated on the basis of vibration theory by means of the oscillation curves. Not only this has given a new method, but also the different response of well level to seismic waves has been explained by it in theory.
基金supported by the National Key R&D Program of China“Response-driven intelligent enhanced analysis and control for bulk power system stability”(No.2021YFB2400800)。
文摘The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.
基金Supported by Fundamental Research Funds for the Central Universities of China(Grant Nos.2014QNB18,2015XKMS022)National Natural Science Foundation of China(Grant No.51475456)+1 种基金Priority Academic Programme Development of Jiangsu Higher Education Institutionsthe Visiting Scholar Foundation of China Scholarship Council
文摘Based on a modified pseudo-rigid-body model,the frequency characteristics and sensitivity of the large-deformation compliant mechanism are studied.Firstly,the pseudo-rigid-body model under the static and kinetic conditions is modified to enable the modified pseudo-rigid-body model to be more suitable for the dynamic analysis of the compliant mechanism.Subsequently,based on the modified pseudo-rigid-body model,the dynamic equations of the ordinary compliant four-bar mechanism are established using the analytical mechanics.Finally,in combination with the finite element analysis software ANSYS,the frequency characteristics and sensitivity of the compliant mechanism are analyzed by taking the compliant parallel-guiding mechanism and the compliant bistable mechanism as examples.From the simulation results,the dynamic characteristics of compliant mechanism are relatively sensitive to the structure size,section parameter,and characteristic parameter of material on mechanisms.The results could provide great theoretical significance and application values for the structural optimization of compliant mechanisms,the improvement of their dynamic properties and the expansion of their application range.
基金"Research on the monitoring and service of South China Sea monsoons", a public welfareproject from the Ministry of Science and Technology (2002RKT01)"Response of interdecadal changes of SouthChina Sea summer monsoon to global change", a project from the Natural Science Foundation of China(902110110)
文摘Datasets of equivalent temperature of black body (TBB) and sea surface temperature (SST)ranging from 1980 to 1997 are used to diagnose and analyze the characteristics of frequency spectrum andstrength of intraseasonal variation of convection. The relationship between the strength of intraseasonaloscillation of convection, strength of convection itself and SST in the South China Sea (SCS) is studied. It isshown that, there are distinguishable annual, interannual and interdecadal variations in both strength andfrequency spectrum of intraseasonal variation of convection in SCS. There are connections between strength ofconvection, strength of ISO1 in the summer half (s.h.) year and SST in ensuing winter half (w.h.) year in SCS.The strong (weak) convection and strong (weak) ISO1 are associated with negative (positive) bias of SST inensuing w.h. year in SCS.
基金supported by the National Natural Science Foundation of China,China(Grant Nos.62173281,51975319,61801407)the State Key Laboratory of Tribology and Institute of Manufacturing Engineering at Tsinghua University。
文摘The electrification of vehicles puts forward higher requirements for the power management efficiency of integrated battery management systems as the primary or sole energy supply.In this paper,an efficient adaptive multi-time scale identification strategy is proposed to achieve high-fidelity modeling of complex kinetic processes inside the battery.More specifically,a second-order equivalent circuit model network considering variable characteristic frequency is constructed based on the high-frequency,medium-high-frequency,and low-frequency characteristics of the key kinetic processes.Then,two coupled sub-filters are developed based on forgetting factor recursive least squares and extended Kalman filtering methods and decoupled by the corresponding time-scale information.The coupled iterative calculation of the two sub-filter modules at different time scales is realized by the voltage response of the kinetic diffusion process.In addition,the driver of the low-frequency subalgorithm with the state of charge variation amount as the kernel is designed to realize the adaptive identification of the kinetic diffusion process parameters.Finally,the concept of dynamical parameter entropy is introduced and advocated to verify the physical meaning of the kinetic parameters.The experimental results under three operating conditions show that the mean absolute error and root-mean-square error metrics of the proposed strategy for voltage tracking can be limited to 13 and 16 mV,respectively.Additionally,from the entropy calculation results,the proposed method can reduce the dispersion of parameter identification results by a maximum of 40.72%and 70.05%,respectively,compared with the traditional fixed characteristic frequency algorithms.The proposed method paves the way for the subsequent development of adaptive state estimators and efficient embedded applications.
基金"Variations of Extremely Heavy Precipitation and Their Response to Global Climate Change",a project in Research Fund for the Science of Tropical Marine and Meteorology(200804)"On the Regional Extremely Heavy Rain in South China Under the Background of Climate Warming,a project in Special China Meteorological Administration Program for Climate Change(CCSF-09-03)Assessment Report on the Climate Change in the South China Region(CCSF-09-11)
文摘This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 2008 and the extremely heavy precipitation thresholds determined for different stations by REOF, trend coefficients, linear trend, Mann-Kendall test and variance analysis. The results are shown as follows. The frequency distribution of extremely heavy precipitation is high in the middle of South China and low in the Guangdong coast and western Guangxi. There are three spatial distribution types of extremely heavy precipitation in South China. The consistent anomaly distribution is the main type. Distribution reversed between the east and the west and between the south and the north is also an important type. Extremely heavy precipitation events in South China mainly occurred in the summer-half of the year. Their frequency during this time accounts for 83.7% of the total frequency. In the 1960 s and 1980 s, extremely heavy precipitation events were less frequent while having an increasing trend from the late 1980 s. Their climatological tendency rates decrease in the central and rise in the other areas of South China, and on average the mean series also shows an upward but insignificant trend at all of the stations. South China's frequency of extremely heavy precipitation events can be divided into six major areas and each of them shows a different inter-annual trend and three of the representative stations experience abrupt changes by showing remarkable increases in terms of Mann-Kendall tests.
基金China Meteorological Special Program(GYHY201506013)National Nature Science Foundation of China(41405068,41275151,41475034)+1 种基金Qing-Lan Project of Jiangsu ProvinceNatural Science Foundation of Jiangsu Province(SBK201220841)
文摘Based on the number of foggy days in Nanjing in December from 1980 to 2011, we analyzed the surface temperature and atmospheric circulation characteristics of foggy years and less-foggy years. Positive anomalies of the Arctic Oscillation(AO) were found to weaken the East Asian trough, which is not conducive to the southward migration of cold air. Simultaneously, this atmospheric condition favors stability as a result of a high-pressure anomaly from the middle Yangtze River Delta region. A portion of La Nia events increases the amount of water vapor in the South China Sea region, so this phenomenon could provide the water vapor condition required for foggy days in Nanjing.Based on the data in December 2007, which contained the greatest number of foggy days for the years studied, the source of fog vapor in Nanjing was primarily from southern China and southwest Taiwan Island based on a synoptic scale study. The water vapor in southern China and in the southwestern flow increased, and after a period of 2-3 days,the humidity in Nanjing increased. Simultaneously, the water vapor from the southwestern of Taiwan Island was directly transported to Nanjing by the southerly wind. Therefore, these two areas are the most important sources of water vapor that results in heavy fog in Nanjing. Using the bivariate Empirical Orthogonal Function(EOF) mode on the surface temperature and precipitable water vapor, the first mode was found to reflect the seasonal variation from early winter to late winter, which reduced the surface temperature on a large scale. The second mode was found to reflect a large-scale,northward, warm and humid airflow that was accompanied by the enhancement of the subtropical high, particularly between December 15-21, which is primarily responsible for the consecutive foggy days in Nanjing.
基金Project supported by the National Natural Science Foundation of China(Grant No.69901003)the Scientific Research Fund of Sichuan Provincial Education Department
文摘Bias non-conservation characteristics of radio-frequency noise mechanism of 40-nm n-MOSFET are observed by modeling and measuring its drain current noise. A compact model for the drain current noise of 40-nm MOSFET is proposed through the noise analysis. This model fully describes three kinds of main physical sources that determine the noise mechanism of 40-nm MOSFET, i.e., intrinsic drain current noise, thermal noise induced by the gate parasitic resistance, and coupling thermal noise induced by substrate parasitic effect. The accuracy of the proposed model is verified by noise measurements, and the intrinsic drain current noise is proved to be the suppressed shot noise, and with the decrease of the gate voltage, the suppressed degree gradually decreases until it vanishes. The most important findings of the bias non-conservative nature of noise mechanism of 40-nm n-MOSFET are as follows.(i) In the strong inversion region, the suppressed shot noise is weakly affected by the thermal noise of gate parasitic resistance. Therefore, one can empirically model the channel excess noise as being like the suppressed shot noise.(ii) In the middle inversion region, it is almost full of shot noise.(iii) In the weak inversion region, the thermal noise is strongly frequency-dependent, which is almost controlled by the capacitive coupling of substrate parasitic resistance. Measurement results over a wide temperature range demonstrate that the thermal noise of 40-nm n-MOSFET exists in a region from the weak to strong inversion, contrary to the predictions of suppressed shot noise model only suitable for the strong inversion and middle inversion region. These new findings of the noise mechanism of 40-nm n-MOSFET are very beneficial for its applications in ultra low-voltage and low-power RF, such as novel device electronic structure optimization, integrated circuit design and process technology evaluation.
基金Project supported by the National Natural Science Foundation of China(Grant No.61471158)2018 Heilongjiang University Graduate Innovation Research Project of China(Grant No.YJSCX2018-142HLJU)
文摘Extracting characteristic signal from a continuous signal can effectively reduce the difficulty of analyzing the running states of a single-variable nonlinear system.Whether the extracted characteristic signal can accurately reflect the running states of the system is very important.In this paper, a method called automatic sampling method(ASM) for extracting characteristic signals is investigated.The complete definition is described, the effectiveness is proved theoretically, and the general formulas of the extracted characteristic signals are derived for the first time.Furthermore, typical Chua's circuit is used to accomplish a lot of experimental research on the aspect of frequency domain.The experimental results show that ASM is feasible and practical, and can automatically generate a characteristic signal with the change of the original signal.
基金This work was supported by National Natural Foundation of China No.19835030.
文摘An inductively coupled radio frequency ion source has been developed and its extraction characteristics measured. Beam current density up to 0.11 mA/ cm2 was obtained with argon at a rf discharge power of about 140 W. The dependences of ion beam on the discharge parameters such as rf source power, gas pressure and gas flow rate was studied.
文摘oceanographic data files on the China Seas prepared by the National Marine Data and Information Service, SOA, China and the '30-year (1953-1982) Reports of Sea Surface Monthly Mean Temperature in the East China Sea by the Meteorological Agency, Japan,' were used to calculate the digital characteristics of frequency distribution of sea and air temperature in 153 areas in the China Seas. Principal factor analysis and fuzzy cluster ISODATA were used to divide the China hydroclimatic area into three climatic zones including ten climatic regions. It is concluded that the characteristic values derived by this method may completely show the characteristics of frequency distribution of sea and air temperature in the studied area and the final division of hydroclimatic area is fully coincident with the author's former result [2].
文摘Soil is a typical porous media and its impedance characteristic directly determines the performance of grounding system. Soil phase frequency characteristic measurements were carried out on various soil types and water content. This paper finds that the impedance angle of soil specimen presents a capacitive performance when power frequency (f) is low. As the frequency increases, soil impedance angle goes up rapidly. Furthermore the frequency characteristic while f > 1000 Hz is distinct in terms of different water content. In particular, at low moisture content, soil impedance angle would be higher than 0?, that is, the inductive component is obvious. The study result indicates that porous media possesses the unique conductivity property dif-ferent from conductor and solution. Its mechanism needs further study.
基金Supported by the State Grid Scientific and Technological Project (Title: Research on Control Strategy with Fast Demand Response to Severe Power Shortage, SGJS0000DKJS1700263)
文摘In a power system, power generation and load have frequency response characteristics, which randomly fluctuate with changes in operating status. This study investigates a probabilistic power flow method that considers the unit and load uncertainty of the static frequency characteristic. Firstly, a calculation model is established on the basis of the characteristics of the frequency modulation performance of the unit and load. Then a calculation method is developed using the concept of dynamic power flow in order to determine the probability distribution of the active power flow of each line under the occurrence of a fault in the system. In the method, Monte Carlo sampling with the semi-invariant method is applied for analysis and calculation. The IEEE-30-buses system is taken as an example to analyze the impact of different responses of units on the power flow distribution of various branches. The method discussed herein is compared with the Monte Carlo simulation method to verify its effectiveness.
基金Supported by the Hunan Provincial Natural Science Foundation (No.05JJ30115).
文摘The parasitic capacitance effect and its influence to the performance have been investigated in Bi-polar Junction Metal-Oxide-Semiconductor Field-Effect Transistor (BJMOSFET). The frequency characteristic equivalent circuit and high frequency response model of BJMOSFET have been presented. The frequency characteristic of BJMOSFET is simulated using the multi-transient analytical method and PSPICE9 simulator. The conclusions that BJMOSFET owns less total capacitance, wider frequency band, better transient charac-teristic and better frequency responses are reached by comparing with the traditional MOSFET at the same structure parameters and bias conditions. BJMOSFET, as a novel promising high frequency device, would be desired to find application in future integrated circuit.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61204112.61204089 and 61306099the Guangdong Provincial Natural Science Foundation under Grant No 2014A030313656
文摘The I-V characteristics and low frequency noises for indium zinc oxide thin film transistor are measured between 250 K and 430 K. The experimental results show that drain currents are thermally activated following the Meyer Neldel rule, which can be explained by the multiple-trapping process. Moreover, the field effect electron mobility firstly increases, and then decreases with the increase of temperature, while the threshold voltage decreases with increasing the temperature. The activation energy and the density of localized gap states are extracted. A noticeable increase in the density of localized states is observed at the higher temperatures.
基金Supported by the National Natural Science Foundation of China under Grant No 11173026the International GNSS Monitoring and Assessment System(iGMAS)of National Time Service Centre
文摘We present a new digital phase lock technology to achieve the frequency control and transformation through high precision multi-cycle group synchronization between signals without the frequency transformation circuit. In the case of digital sampling, the passing zero point of the phase of the controlled signal has the phase step characteristic, the phase step of the passing zero point is monotonic continuous with high resolution in the phase lock process, and using the border effect of digital fuzzy area, the gate can synchronize with the two signals, the quantization error is reduced. This technique is quite different from the existing methods of frequency transformation and frequency synthesis, the phase change characteristic between the periodic signals with different nominal is used. The phase change has the periodic phenomenon, and it has the high resolution step value. With the application of the physical law, the noise is reduced because of simplifying frequency transformation circuits, and the phase is locked with high precision. The regular phase change between frequency signals is only used for frequency measurement, and the change has evident randomness, but this randomness is greatly reduced in frequency control, and the certainty of the process result is clear. The experiment shows that the short term frequency stability can reach 10-12/s orders of magnitude.