A Ni-based alloy coating with 30 wt.%spherical fungsten carbide particles was prepared through plasma transferred arc welding on 42CrMo steel.The composition and microstructure of the coati ng were examined through X-...A Ni-based alloy coating with 30 wt.%spherical fungsten carbide particles was prepared through plasma transferred arc welding on 42CrMo steel.The composition and microstructure of the coati ng were examined through X-ray diffraction and scanning electron microscopy with energy-dispersive spectrometry.The corrosion behaviors of the coating compared to the Ni coating without tungsten carbide particles and to the bare substrate in a0.5 mol/L HC1 solution were presented through polarization curves,electrochemical impedance spectroscopy(EIS)measurements and long-term immersion tests.The results demonstrated that the composite coating microstructure comprised Ni matrix,Ni-rich phase,tungsten carbide particles,W-rich phase and Cr-rich phase.The polarization curves and EIS measurements presented that a passivation film,which mainly included Ni,Cr,Fe and W oxides,was formed in the composite coating that protected the substrate from corrosion by HC1 solution.In the immersion tests,a micro-galvanic reaction at the new-formed phases and Ni matrix interface caused severe pit corrosion and Ni matrix consumption.The debonding of Ni-rich and W-rich phases could be observed with the immersion time extension.The tungsten carbide particles and Cr-rich phase were still attached on the surface for up to 30 days.展开更多
文摘A Ni-based alloy coating with 30 wt.%spherical fungsten carbide particles was prepared through plasma transferred arc welding on 42CrMo steel.The composition and microstructure of the coati ng were examined through X-ray diffraction and scanning electron microscopy with energy-dispersive spectrometry.The corrosion behaviors of the coating compared to the Ni coating without tungsten carbide particles and to the bare substrate in a0.5 mol/L HC1 solution were presented through polarization curves,electrochemical impedance spectroscopy(EIS)measurements and long-term immersion tests.The results demonstrated that the composite coating microstructure comprised Ni matrix,Ni-rich phase,tungsten carbide particles,W-rich phase and Cr-rich phase.The polarization curves and EIS measurements presented that a passivation film,which mainly included Ni,Cr,Fe and W oxides,was formed in the composite coating that protected the substrate from corrosion by HC1 solution.In the immersion tests,a micro-galvanic reaction at the new-formed phases and Ni matrix interface caused severe pit corrosion and Ni matrix consumption.The debonding of Ni-rich and W-rich phases could be observed with the immersion time extension.The tungsten carbide particles and Cr-rich phase were still attached on the surface for up to 30 days.