Ultra-reliable and low-latency communication(URLLC)is still in the early stage of research due to its two strict and conflicting requirements,i.e.,ultra-low latency and ultra-high reliability,and its impact on securit...Ultra-reliable and low-latency communication(URLLC)is still in the early stage of research due to its two strict and conflicting requirements,i.e.,ultra-low latency and ultra-high reliability,and its impact on security performance is still unclear.Specifically,short-packet communication is expected to meet the delay requirement of URLLC,while the degradation of reliability caused by it makes traditional physical-layer security metrics not applicable.In this paper,we investigate the secure short-packet transmission in uplink massive multiuser multiple-inputmultiple-output(MU-MIMO)system under imperfect channel state information(CSI).We propose an artificial noise scheme to improve the security performance of the system and use the system average secrecy throughput(AST)as the analysis metric.We derive the approximate closed-form expression of the system AST and further analyze the system asymptotic performance in two regimes.Furthermore,a one-dimensional search method is used to optimize the maximum system AST for a given pilot length.Numerical results verify the correctness of theoretical analysis,and show that there are some parameters that affect the tradeoff between security and latency.Moreover,appropriately increasing the number of antennas at the base station(BS)and transmission power at user devices(UDs)can increase the system AST to achieve the required threshold.展开更多
Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selec...Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selection are crucial problems. To address the joint optimization of power and mode selection under imperfect CSI, we propose an optimal, energy-aware joint power allocation and mode selection(JPAMS) scheme. First, we derive the closed-form solution for the power minimization for both D2 D and cellular links while satisfying different quality of service(Qo S) constraints. Second, we address the mode selection problem in presence of imperfect CSI, based on the derived power allocation. Moreover, the theoretical analysis and simulation results are presented to evaluate the proposed scheme for the D2 D communications.展开更多
Considering that perfect channel state information(CSI)is hard to obtain in practice,the capacity of downlink distributed antennas system(DAS)with imperfect CSI is analyzed over Rayleigh fading channel.Based on the pe...Considering that perfect channel state information(CSI)is hard to obtain in practice,the capacity of downlink distributed antennas system(DAS)with imperfect CSI is analyzed over Rayleigh fading channel.Based on the performance analysis,using the probability density function and numerical calculation,an accurate closedform expression of ergodic capacity of downlink DAS under imperfect CSI is derived.It includes the one under perfect CSI as a special case.This theoretical expression can provide good performance evaluation for downlink DAS for both perfect and imperfect CSI due to its accuracy.Simulation results indicate that the theoretical analysis agrees well with the corresponding simulation,and the capacity can be increased effectively by decreasing the estimation error and/or path loss.展开更多
In this paper, we propose a dual-threshold based secure On-Off transmission scheme, where signals are transmitted only if the channel condition can guarantee secure and reliable communication. First, we present a dyna...In this paper, we propose a dual-threshold based secure On-Off transmission scheme, where signals are transmitted only if the channel condition can guarantee secure and reliable communication. First, we present a dynamic access strategy to increase access efficiency, which provides an access region for the intended user. Then, we propose an emission control policy to transmit signals according to the current channel condition, which declines the influence of channel estimation errors and guarantees qualities of communication links. Furthermore, we give a comprehensive performance analysis for the proposed scheme in terms of connection outage probability(COP) and secrecy outage probability(SOP), and present a dual-threshold optimization model to further support the performance. Numerical results verify that the secure On-Off transmission scheme can increase the system secure energy efficiency and guarantee reliable and secure communication.展开更多
A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay syst...A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay system over Nakagami-m fading channels with perfect and imperfect channel state information (CSI). In order to maximize spectral efficiency (SE) under delay and packet error rate (PER) performance constraints, a state transition model and an optimization framework with perfect CSI are presented. Then the framework is extended to cooperative relay system with imperfect CSI. The numerical results show that the scheme can achieve maximum SE while satisfying transmitting delay requirements. Compared with the imperfect CSI, the average PER with perfect CSI is much lower and the spectral efficiency is much higher.展开更多
A robust scheme is proposed to jointly optimize transmit/receive beamformers for Mul-tiple Input Multiple Output(MIMO) downlinks where the available Channel State Information(CSI) at Base Station(BS)(CSIBS) is imperfe...A robust scheme is proposed to jointly optimize transmit/receive beamformers for Mul-tiple Input Multiple Output(MIMO) downlinks where the available Channel State Information(CSI) at Base Station(BS)(CSIBS) is imperfect.The criterion is to minimize the sum Mean Square Error(sum-MSE) over all users under a constraint on the total transmit power,which is a non-convex and non-linear problem.Observing from the first order optimization condition that the optimal trans-mit/receive beamformers are mutually dependent,the transmit/receive beamformers for each user are updated iteratively until the sum-MSE is minimized.Simulation results indicate that the proposed scheme can effectively mitigate the system performance loss induced by imperfect CSIBS.展开更多
We investigate the sum capacity of Block Diagonalization precoding Multiple Input Mul-tiple Output Broadcast Channels(BD MIMO BC) with imperfect Channel State Information(CSI) at the base station.Since it is difficult...We investigate the sum capacity of Block Diagonalization precoding Multiple Input Mul-tiple Output Broadcast Channels(BD MIMO BC) with imperfect Channel State Information(CSI) at the base station.Since it is difficult to obtain the exact expression,a lower and an upper bounds of the sum capacity under Gaussian channel estimation errors are drived instead.Analyses show that the gap between two bounds is considerably tight at all Signal to Noise Ratio(SNR) region.From the lower bound of the sum capacity,we can see that the multiplexing gain tends to be zero at high SNR region,which indicates that the BD MIMO BC system with channel estimation errors is interference-limited at high SNR.展开更多
This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state...This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.展开更多
We investigate the problem of resource allocation in a downlink orthogonal frequency-division multiple access (OFDMA) broadband network with an eavesdropper under the condition that both legitimate users and the eav...We investigate the problem of resource allocation in a downlink orthogonal frequency-division multiple access (OFDMA) broadband network with an eavesdropper under the condition that both legitimate users and the eavesdropper are with imperfect channel state information (CSI). We consider three kinds of imperfect CSI: (1) noise and channel estimation errors, (2) feedback delay and channel prediction, and (3) limited feedback channel capacity, where quantized CSI is studied using rate-distortion theory because it can be used to establish an information-theoretic lower bound on the capacity of the feedback channel. The problem is formulated as joint power and subcarrier allocation to optimize the maximum-minimum (max-min) fairness criterion over the users' secrecy rate. The problem considered is a mixed integer nonlinear programming problem. To reduce the complexity, we propose a two-step suboptimal algorithm that separately performs power and subcarrier allocation. For a given subcarrier assignment, optimal power allocation is achieved by developing an algorithm of polynomial computational complexity. Numerical results show that our proposed algorithm can approximate the optimal solution.展开更多
水声信道面临带宽资源有限、环境复杂的问题,为提高水下通信速率,基于水声传感器网络的海洋应用提出自适应通信的需求。传统基于简单信噪比指标的自适应资源分配算法无法准确表述衰落信道的统计特征,利用强化学习和卷积神经网络预测信...水声信道面临带宽资源有限、环境复杂的问题,为提高水下通信速率,基于水声传感器网络的海洋应用提出自适应通信的需求。传统基于简单信噪比指标的自适应资源分配算法无法准确表述衰落信道的统计特征,利用强化学习和卷积神经网络预测信道的方法虽然可以提高一定信道状态信息(channel state information,CSI)的准确性,但这种方法需要长期的观测和大量的训练样本,不符合水声环境的实际情况。对比,构建了一种中继放大转发协作正交频分复用(orthogonal frequency division multiplexing,OFDM)通信的模型,解决了由于节点漂浮导致直接通信传输效率变低的问题,并提出一种在时延反馈CSI中基于OFDM的自适应功率比特分配算法,利用条件概率表征不完美的CSI,调整自适应通信参数,进行遍历容量最大化建模。仿真结果表明,该算法实现功率和比特的联合自适应分配,平均传输速率指标优于直接反馈CSI的功率分配算法,虽然略低于采用马尔可夫链预测信道的方法,但结合算法复杂度来看,所提算法更简单,更适合能量有限的水声传感器网络。展开更多
In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem i...In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved.展开更多
为提高非正交多址接入(non-orthogonal multiple access,NOMA)增强型设备到设备(device-to-device,D2D)组链路的鲁棒性和能效,考虑非理想信道状态信息(channel station information,CSI),提出一种能效优化的鲁棒资源分配算法.首先,在保...为提高非正交多址接入(non-orthogonal multiple access,NOMA)增强型设备到设备(device-to-device,D2D)组链路的鲁棒性和能效,考虑非理想信道状态信息(channel station information,CSI),提出一种能效优化的鲁棒资源分配算法.首先,在保证子信道分配、蜂窝用户和D2D组最小速率以及D2D组最大传输功率约束下,建立最大最小鲁棒能效模型;其次,考虑最坏情况法将信道不确定性建模为有界信道估计误差,并用泰勒级数展开式、凸松弛、变量转换法将原多变量耦合问题转化为凸优化问题;最后,用拉格朗日对偶理论求解.仿真结果表明,所提出的算法将传输速率控制在最低速率阈值以上,具有良好的鲁棒性,与其他算法相比能效提高了8.3%.展开更多
为了满足密集的用户需求,正在发展的蜂窝网络增加了移动系统下的能量消耗,但更广的网络覆盖范围和功耗更低的无线通信系统也给无线通信系统带来了更多的挑战。针对这些持续增长的需求,本文设计了一种能实现能量效率最大化的多小区大规...为了满足密集的用户需求,正在发展的蜂窝网络增加了移动系统下的能量消耗,但更广的网络覆盖范围和功耗更低的无线通信系统也给无线通信系统带来了更多的挑战。针对这些持续增长的需求,本文设计了一种能实现能量效率最大化的多小区大规模多输入多输出(multiple input multiple output,MIMO)系统下行链路的实现方法,提出了在非完美信道状态信息(channel state information,CSI)情况下包含基站天线数、导频复用因子以及用户数量等参数的信干噪比最佳闭式表达,通过最大比合并(maximal ratio combining,MRC)接收技术推导出大规模MIMO系统的下行链路频谱效率,再根据功耗模型得到系统的整体能量效率,利用交替迭代的优化算法进行优化求解,得出最大能效时的相关参数数值。由仿真结果可知,本文所提的多小区大规模MIMO系统的下行链路的实现方法与现有多小区方法相比,能量效率有12.2%的提升,并且对于环境的变化有更好的鲁棒性,对于多小区大规模MIMO系统具有一定参考意义。展开更多
研究基于译码转发的全双工中继系统的物理层安全问题。假设系统模型中窃听者与合法用户以及中继之间存在直接链路,考虑在合法用户和中继之间的信道状态信息(channel state information,CSI)是非理想的情况下,通过分析信道估计误差、窃...研究基于译码转发的全双工中继系统的物理层安全问题。假设系统模型中窃听者与合法用户以及中继之间存在直接链路,考虑在合法用户和中继之间的信道状态信息(channel state information,CSI)是非理想的情况下,通过分析信道估计误差、窃听信道的平均信噪比和残余自干扰对中继系统物理层安全的影响,推导出每个节点端到端瞬时信干噪比和非理想CSI下的保密中断概率表达式。仿真结果表明,信道估计误差、窃听信道的平均信噪比和残余自干扰越小,系统保密中断概率越小,系统安全性能越高;在高信噪比时,残余自干扰对保密中断概率的影响可以忽略不计;同时,全双工中继方案优于传统的半双工中继方案。展开更多
This paper focuses on boosting the performance of small cell networks(SCNs)by integrating multiple-input multiple-output(MIMO)and nonorthogonal multiple access(NOMA)in consideration of imperfect channel-state informat...This paper focuses on boosting the performance of small cell networks(SCNs)by integrating multiple-input multiple-output(MIMO)and nonorthogonal multiple access(NOMA)in consideration of imperfect channel-state information(CSI).The estimation error and the spatial randomness of base stations(BSs)are characterized by using Kronecker model and Poisson point process(PPP),respectively.The outage probabilities of MIMO-NOMA enhanced SCNs are first derived in closed-form by taking into account two grouping policies,including random grouping and distance-based grouping.It is revealed that the average outage probabilities are irrelevant to the intensity of BSs in the interference-limited regime,while the outage performance deteriorates if the intensity is sufficiently low.Besides,as the channel uncertainty lessens,the asymptotic analyses manifest that the target rates must be restricted up to a bound to achieve an arbitrarily low outage probability in the absence of the inter-cell interference.Moreover,highly correlated estimation error ameliorates the outage performance under a low quality of CSI,otherwise it behaves oppositely.Afterwards,the goodput is maximized by choosing appropriate precoding matrix,receiver filters and transmission rates.In the end,the numerical results verify our analysis and corroborate the superiority of our proposed algorithm.展开更多
随着无线通信的迅猛发展,如何实现信息的安全传输,越来越受到研究人员的广泛关注。考虑实际的通信场景,即发送端已知不完备的信道状态信息(channel state information,CSI),研究了多用户多输入多输出下行链路的物理层安全性能。具体而言...随着无线通信的迅猛发展,如何实现信息的安全传输,越来越受到研究人员的广泛关注。考虑实际的通信场景,即发送端已知不完备的信道状态信息(channel state information,CSI),研究了多用户多输入多输出下行链路的物理层安全性能。具体而言,以最大化系统安全容量为多用户调度准则,采用最大比传输波束成形方案,获得了系统安全中断概率(secrecy outage probability,SOP)的闭合表达式及在高SNR下的渐近结果。除此之外,也获得了在已知完备CSI情形下,系统SOP的准确的理论结果及渐近结果。研究表明:已知不完备CSI情形下,网络可获得的分集增益为K;已知完备CSI情形下,分集增益为K×N_B×N_S,其中K、N_B、N_S分别代表用户数目,基站的天线数目和用户的天线数目。最终,通过蒙特卡洛仿真,验证了理论分析的正确性。展开更多
基金supported by the National Key R&D Program of China under Grant 2018YFB1801103the National Natural Science Foundation of China under Grant(no.62171464,no.62122094)。
文摘Ultra-reliable and low-latency communication(URLLC)is still in the early stage of research due to its two strict and conflicting requirements,i.e.,ultra-low latency and ultra-high reliability,and its impact on security performance is still unclear.Specifically,short-packet communication is expected to meet the delay requirement of URLLC,while the degradation of reliability caused by it makes traditional physical-layer security metrics not applicable.In this paper,we investigate the secure short-packet transmission in uplink massive multiuser multiple-inputmultiple-output(MU-MIMO)system under imperfect channel state information(CSI).We propose an artificial noise scheme to improve the security performance of the system and use the system average secrecy throughput(AST)as the analysis metric.We derive the approximate closed-form expression of the system AST and further analyze the system asymptotic performance in two regimes.Furthermore,a one-dimensional search method is used to optimize the maximum system AST for a given pilot length.Numerical results verify the correctness of theoretical analysis,and show that there are some parameters that affect the tradeoff between security and latency.Moreover,appropriately increasing the number of antennas at the base station(BS)and transmission power at user devices(UDs)can increase the system AST to achieve the required threshold.
基金supported in part by Important National Science and Technology Specific Projects (Grants Nos. 2011 ZX 0300300104, 2012ZX03003012)Fundamental Research Funds for Central Universities (Grant Nos. 72125377)
文摘Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selection are crucial problems. To address the joint optimization of power and mode selection under imperfect CSI, we propose an optimal, energy-aware joint power allocation and mode selection(JPAMS) scheme. First, we derive the closed-form solution for the power minimization for both D2 D and cellular links while satisfying different quality of service(Qo S) constraints. Second, we address the mode selection problem in presence of imperfect CSI, based on the derived power allocation. Moreover, the theoretical analysis and simulation results are presented to evaluate the proposed scheme for the D2 D communications.
基金supported by the Doctoral Fund of Ministry of Education of China(No.20093218120021)the Fundamental Research Funds for the Central Universities+1 种基金the Research Founding of Graduate Innovation Center in NUAA(Nos.kfjj201429,kfjj20150410)the PARD of Jiangsu Higher Education Institutions,Qing Lan Project of Jiangsu
文摘Considering that perfect channel state information(CSI)is hard to obtain in practice,the capacity of downlink distributed antennas system(DAS)with imperfect CSI is analyzed over Rayleigh fading channel.Based on the performance analysis,using the probability density function and numerical calculation,an accurate closedform expression of ergodic capacity of downlink DAS under imperfect CSI is derived.It includes the one under perfect CSI as a special case.This theoretical expression can provide good performance evaluation for downlink DAS for both perfect and imperfect CSI due to its accuracy.Simulation results indicate that the theoretical analysis agrees well with the corresponding simulation,and the capacity can be increased effectively by decreasing the estimation error and/or path loss.
基金supported in part by National Natural Science Foundation of China under Grants No. 61871404, 61401510, 61521003, 61501516
文摘In this paper, we propose a dual-threshold based secure On-Off transmission scheme, where signals are transmitted only if the channel condition can guarantee secure and reliable communication. First, we present a dynamic access strategy to increase access efficiency, which provides an access region for the intended user. Then, we propose an emission control policy to transmit signals according to the current channel condition, which declines the influence of channel estimation errors and guarantees qualities of communication links. Furthermore, we give a comprehensive performance analysis for the proposed scheme in terms of connection outage probability(COP) and secrecy outage probability(SOP), and present a dual-threshold optimization model to further support the performance. Numerical results verify that the secure On-Off transmission scheme can increase the system secure energy efficiency and guarantee reliable and secure communication.
基金Sponsored by the National Science and Technology Major Special Project of China (Grant No.2011ZX03003-003-02)the Natural Science Foundation of China (Grant No. 60972070)+2 种基金the Natural Science Foundation of Chongqing (Grant No. CSTC2009BA2090)the Foundation of Chongqing Educational Committee ( Grant No. KJ100514)the Special Fund of Chongqing Key Laboratory
文摘A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay system over Nakagami-m fading channels with perfect and imperfect channel state information (CSI). In order to maximize spectral efficiency (SE) under delay and packet error rate (PER) performance constraints, a state transition model and an optimization framework with perfect CSI are presented. Then the framework is extended to cooperative relay system with imperfect CSI. The numerical results show that the scheme can achieve maximum SE while satisfying transmitting delay requirements. Compared with the imperfect CSI, the average PER with perfect CSI is much lower and the spectral efficiency is much higher.
基金the National Natural Science Foundation of China(No.60572156)
文摘A robust scheme is proposed to jointly optimize transmit/receive beamformers for Mul-tiple Input Multiple Output(MIMO) downlinks where the available Channel State Information(CSI) at Base Station(BS)(CSIBS) is imperfect.The criterion is to minimize the sum Mean Square Error(sum-MSE) over all users under a constraint on the total transmit power,which is a non-convex and non-linear problem.Observing from the first order optimization condition that the optimal trans-mit/receive beamformers are mutually dependent,the transmit/receive beamformers for each user are updated iteratively until the sum-MSE is minimized.Simulation results indicate that the proposed scheme can effectively mitigate the system performance loss induced by imperfect CSIBS.
基金Supported by Chinese 863 Program (2006AA01Z268)the National Natural Science Foundation of China (No. 60496311)
文摘We investigate the sum capacity of Block Diagonalization precoding Multiple Input Mul-tiple Output Broadcast Channels(BD MIMO BC) with imperfect Channel State Information(CSI) at the base station.Since it is difficult to obtain the exact expression,a lower and an upper bounds of the sum capacity under Gaussian channel estimation errors are drived instead.Analyses show that the gap between two bounds is considerably tight at all Signal to Noise Ratio(SNR) region.From the lower bound of the sum capacity,we can see that the multiplexing gain tends to be zero at high SNR region,which indicates that the BD MIMO BC system with channel estimation errors is interference-limited at high SNR.
基金supported by the National Natural Science Foundation of China under grant 61941106。
文摘This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.
基金Project supported by the National Natural Science Foundation of China(Nos.61471008,61622101,and 61571020)the National Key Research and Development Program of China(No.2016YFE0123100)
文摘We investigate the problem of resource allocation in a downlink orthogonal frequency-division multiple access (OFDMA) broadband network with an eavesdropper under the condition that both legitimate users and the eavesdropper are with imperfect channel state information (CSI). We consider three kinds of imperfect CSI: (1) noise and channel estimation errors, (2) feedback delay and channel prediction, and (3) limited feedback channel capacity, where quantized CSI is studied using rate-distortion theory because it can be used to establish an information-theoretic lower bound on the capacity of the feedback channel. The problem is formulated as joint power and subcarrier allocation to optimize the maximum-minimum (max-min) fairness criterion over the users' secrecy rate. The problem considered is a mixed integer nonlinear programming problem. To reduce the complexity, we propose a two-step suboptimal algorithm that separately performs power and subcarrier allocation. For a given subcarrier assignment, optimal power allocation is achieved by developing an algorithm of polynomial computational complexity. Numerical results show that our proposed algorithm can approximate the optimal solution.
文摘水声信道面临带宽资源有限、环境复杂的问题,为提高水下通信速率,基于水声传感器网络的海洋应用提出自适应通信的需求。传统基于简单信噪比指标的自适应资源分配算法无法准确表述衰落信道的统计特征,利用强化学习和卷积神经网络预测信道的方法虽然可以提高一定信道状态信息(channel state information,CSI)的准确性,但这种方法需要长期的观测和大量的训练样本,不符合水声环境的实际情况。对比,构建了一种中继放大转发协作正交频分复用(orthogonal frequency division multiplexing,OFDM)通信的模型,解决了由于节点漂浮导致直接通信传输效率变低的问题,并提出一种在时延反馈CSI中基于OFDM的自适应功率比特分配算法,利用条件概率表征不完美的CSI,调整自适应通信参数,进行遍历容量最大化建模。仿真结果表明,该算法实现功率和比特的联合自适应分配,平均传输速率指标优于直接反馈CSI的功率分配算法,虽然略低于采用马尔可夫链预测信道的方法,但结合算法复杂度来看,所提算法更简单,更适合能量有限的水声传感器网络。
基金supported by the Fundamental Research Funds for the Central Universities of NUAA(No.kfjj20200414)Natural Science Foundation of Jiangsu Province in China(No.BK20181289).
文摘In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved.
文摘为提高非正交多址接入(non-orthogonal multiple access,NOMA)增强型设备到设备(device-to-device,D2D)组链路的鲁棒性和能效,考虑非理想信道状态信息(channel station information,CSI),提出一种能效优化的鲁棒资源分配算法.首先,在保证子信道分配、蜂窝用户和D2D组最小速率以及D2D组最大传输功率约束下,建立最大最小鲁棒能效模型;其次,考虑最坏情况法将信道不确定性建模为有界信道估计误差,并用泰勒级数展开式、凸松弛、变量转换法将原多变量耦合问题转化为凸优化问题;最后,用拉格朗日对偶理论求解.仿真结果表明,所提出的算法将传输速率控制在最低速率阈值以上,具有良好的鲁棒性,与其他算法相比能效提高了8.3%.
文摘为了满足密集的用户需求,正在发展的蜂窝网络增加了移动系统下的能量消耗,但更广的网络覆盖范围和功耗更低的无线通信系统也给无线通信系统带来了更多的挑战。针对这些持续增长的需求,本文设计了一种能实现能量效率最大化的多小区大规模多输入多输出(multiple input multiple output,MIMO)系统下行链路的实现方法,提出了在非完美信道状态信息(channel state information,CSI)情况下包含基站天线数、导频复用因子以及用户数量等参数的信干噪比最佳闭式表达,通过最大比合并(maximal ratio combining,MRC)接收技术推导出大规模MIMO系统的下行链路频谱效率,再根据功耗模型得到系统的整体能量效率,利用交替迭代的优化算法进行优化求解,得出最大能效时的相关参数数值。由仿真结果可知,本文所提的多小区大规模MIMO系统的下行链路的实现方法与现有多小区方法相比,能量效率有12.2%的提升,并且对于环境的变化有更好的鲁棒性,对于多小区大规模MIMO系统具有一定参考意义。
文摘研究基于译码转发的全双工中继系统的物理层安全问题。假设系统模型中窃听者与合法用户以及中继之间存在直接链路,考虑在合法用户和中继之间的信道状态信息(channel state information,CSI)是非理想的情况下,通过分析信道估计误差、窃听信道的平均信噪比和残余自干扰对中继系统物理层安全的影响,推导出每个节点端到端瞬时信干噪比和非理想CSI下的保密中断概率表达式。仿真结果表明,信道估计误差、窃听信道的平均信噪比和残余自干扰越小,系统保密中断概率越小,系统安全性能越高;在高信噪比时,残余自干扰对保密中断概率的影响可以忽略不计;同时,全双工中继方案优于传统的半双工中继方案。
基金supported in part by the National Key Research and Development Program of China under Grant 2017YFE0120600in part by National Natural Science Foundation of China under Grants 61801192,62171200,and 61801246+7 种基金in part by Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515012136in part by Natural Science Foundation of Anhui Province under Grant 1808085MF164in part by the Science and Technology Planning Project of Guangdong Province under Grants 2018B010114002 and 2019B010137006in part by the Science and Technology Development Fund,Macao SAR(File no.0036/2019/A1 and File no.SKL-IOTSC2021-2023)in part by the Hong Kong Presidents Advisory Committee on Research and Development(PACRD)under Project No.2020/1.6in part by Qinglan Project of University of Jiangsu Provincein part by the Research Committee of University of Macao under Grant MYRG2018-00156-FSTin part by 2018 Guangzhou Leading Innovation Team Program(China)under Grant 201909010006。
文摘This paper focuses on boosting the performance of small cell networks(SCNs)by integrating multiple-input multiple-output(MIMO)and nonorthogonal multiple access(NOMA)in consideration of imperfect channel-state information(CSI).The estimation error and the spatial randomness of base stations(BSs)are characterized by using Kronecker model and Poisson point process(PPP),respectively.The outage probabilities of MIMO-NOMA enhanced SCNs are first derived in closed-form by taking into account two grouping policies,including random grouping and distance-based grouping.It is revealed that the average outage probabilities are irrelevant to the intensity of BSs in the interference-limited regime,while the outage performance deteriorates if the intensity is sufficiently low.Besides,as the channel uncertainty lessens,the asymptotic analyses manifest that the target rates must be restricted up to a bound to achieve an arbitrarily low outage probability in the absence of the inter-cell interference.Moreover,highly correlated estimation error ameliorates the outage performance under a low quality of CSI,otherwise it behaves oppositely.Afterwards,the goodput is maximized by choosing appropriate precoding matrix,receiver filters and transmission rates.In the end,the numerical results verify our analysis and corroborate the superiority of our proposed algorithm.
文摘随着无线通信的迅猛发展,如何实现信息的安全传输,越来越受到研究人员的广泛关注。考虑实际的通信场景,即发送端已知不完备的信道状态信息(channel state information,CSI),研究了多用户多输入多输出下行链路的物理层安全性能。具体而言,以最大化系统安全容量为多用户调度准则,采用最大比传输波束成形方案,获得了系统安全中断概率(secrecy outage probability,SOP)的闭合表达式及在高SNR下的渐近结果。除此之外,也获得了在已知完备CSI情形下,系统SOP的准确的理论结果及渐近结果。研究表明:已知不完备CSI情形下,网络可获得的分集增益为K;已知完备CSI情形下,分集增益为K×N_B×N_S,其中K、N_B、N_S分别代表用户数目,基站的天线数目和用户的天线数目。最终,通过蒙特卡洛仿真,验证了理论分析的正确性。