A high-side thin-layer silicon-on-insulator (SOI) pLDMOS is proposed, adopting field implant (FI) and multiple field plate (MFP) technologies. The breakdown mechanisms of back gate (BG) turn-on, surface channe...A high-side thin-layer silicon-on-insulator (SOI) pLDMOS is proposed, adopting field implant (FI) and multiple field plate (MFP) technologies. The breakdown mechanisms of back gate (BG) turn-on, surface channel punch-through, and vertical and lateral avalanche breakdown are investigated by setting up analytical models, simulating related parameters and verifying experimentally. The device structure is optimized based on the above research. The shallow junction achieved through FI technology attenuates the BG effect, the optimized channel length eliminates the surface channel punch-through, the advised thickness of the buried oxide dispels the vertical avalanche breakdown, and the MFP technology avoids premature lateral avalanche breakdown by modulating the electric field distribution. Finally, for the first time, a 300 V high-side pLDMOS is experimentally realized on a 1.5 μm thick thin-layer SOI.展开更多
The hydrogen ion implantation process in Smart-Cut technology is investigated in the present paper using molecular dynamics(MD) simulations.This work focuses on the effects of the implantation energy,dose of hydroge...The hydrogen ion implantation process in Smart-Cut technology is investigated in the present paper using molecular dynamics(MD) simulations.This work focuses on the effects of the implantation energy,dose of hydrogen ions and implantation temperature on the distribution of hydrogen ions and defect rate induced by ion implantation.Numerical analysis shows that implanted hydrogen ions follow an approximate Gaussian distribution which mainly depends on the implantation energy and is independent of the hydrogen ion dose and implantation temperature.By introducing a new parameter of defect rate,the influence of the processing parameters on defect rate is also quantitatively examined.展开更多
A 700 V BCD technology platform is presented for high voltage applications. An important feature is that all the devices have been realized by using a fully implanted technology in a p-type single crystal without an e...A 700 V BCD technology platform is presented for high voltage applications. An important feature is that all the devices have been realized by using a fully implanted technology in a p-type single crystal without an epitaxial or a buried layer. An economical manufacturing process, requiring only 10 masking steps, yields a broad range of MOS and bipolar components integrated on a common substrate, including 700 V nLDMOS, 200 V nLDMOS, 80 V nLDMOS, 60 V nLDMOS, 40 V nLDMOS, 700 V nJFET, and low voltage devices. A robust double RESURF nLDMOS with a breakdown voltage of 800 V and specific on-resistance of 206.2 mf2.cm2 is successfully optimized and realized. The results of this technology are low fabrication cost, simple process and small chip area for PIC products.展开更多
Carbon nanotube field effect transistor(CNFET) shows lower threshold voltage and smaller leakage current in comparison to its CMOS counterpart. In this paper, two kinds of CNFET-based rectifiers, full-wave rectifier...Carbon nanotube field effect transistor(CNFET) shows lower threshold voltage and smaller leakage current in comparison to its CMOS counterpart. In this paper, two kinds of CNFET-based rectifiers, full-wave rectifiers and voltage doubler rectifiers are presented for biomedical implantable applications. Based on the standard 32 nm CNFET model, the electrical performance of CNFET rectifiers is analyzed and compared. Simulation results show the voltage conversion efficiency(VCE) and power conversion efficiency(PCE) achieve 70.82% and 72.49% for CNFET full-wave rectifiers and 56.60% and 61.17% for CNFET voltage double rectifiers at typical 1.0 V input voltage excitation, which are higher than that of CMOS design. Moreover, considering the controllable property of CNFET threshold voltage, the effect of various design parameters on the electrical performance is investigated.It is observed that the VCE and PCE of CNFET rectifier increase with increasing CNT diameter and number of tubes. The proposed results would provide some guidelines for design and optimization of CNFET-based rectifier circuits.展开更多
Chinese medical companies share health benefits with the Belt and Road communityWang Zhao works in Beijing but her work helps people in faraway places.She develops intraocular lenses,to be implanted in the eyes of pat...Chinese medical companies share health benefits with the Belt and Road communityWang Zhao works in Beijing but her work helps people in faraway places.She develops intraocular lenses,to be implanted in the eyes of patients undergoing surgery for cataract or myopia,at EyebrightMedical Technology(Beijing)Co.展开更多
基金Project supported by National Natural Science Foundation of China(Grant No.60906038)
文摘A high-side thin-layer silicon-on-insulator (SOI) pLDMOS is proposed, adopting field implant (FI) and multiple field plate (MFP) technologies. The breakdown mechanisms of back gate (BG) turn-on, surface channel punch-through, and vertical and lateral avalanche breakdown are investigated by setting up analytical models, simulating related parameters and verifying experimentally. The device structure is optimized based on the above research. The shallow junction achieved through FI technology attenuates the BG effect, the optimized channel length eliminates the surface channel punch-through, the advised thickness of the buried oxide dispels the vertical avalanche breakdown, and the MFP technology avoids premature lateral avalanche breakdown by modulating the electric field distribution. Finally, for the first time, a 300 V high-side pLDMOS is experimentally realized on a 1.5 μm thick thin-layer SOI.
基金Project supported by the National Natural Science Foundation of China(No.11372261)the Excellent Young Scientists Supporting Project of Science and Technology Department of Sichuan Province(No.2013JQ0030)+3 种基金the Supporting Project of Department of Education of Sichuan Province(No.2014zd3132)the Opening Project of Key Laboratory of Testing Technology for Manufacturing Process,Southwest University of Science and Technology-Ministry of Education(No.12zxzk02)the Fund of Doctoral Research of Southwest University of Science and Technology(No.12zx7106)the Postgraduate Innovation Fund Project of Southwest University of Science and Technology(No.14ycxjj0121)
文摘The hydrogen ion implantation process in Smart-Cut technology is investigated in the present paper using molecular dynamics(MD) simulations.This work focuses on the effects of the implantation energy,dose of hydrogen ions and implantation temperature on the distribution of hydrogen ions and defect rate induced by ion implantation.Numerical analysis shows that implanted hydrogen ions follow an approximate Gaussian distribution which mainly depends on the implantation energy and is independent of the hydrogen ion dose and implantation temperature.By introducing a new parameter of defect rate,the influence of the processing parameters on defect rate is also quantitatively examined.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.60906038)
文摘A 700 V BCD technology platform is presented for high voltage applications. An important feature is that all the devices have been realized by using a fully implanted technology in a p-type single crystal without an epitaxial or a buried layer. An economical manufacturing process, requiring only 10 masking steps, yields a broad range of MOS and bipolar components integrated on a common substrate, including 700 V nLDMOS, 200 V nLDMOS, 80 V nLDMOS, 60 V nLDMOS, 40 V nLDMOS, 700 V nJFET, and low voltage devices. A robust double RESURF nLDMOS with a breakdown voltage of 800 V and specific on-resistance of 206.2 mf2.cm2 is successfully optimized and realized. The results of this technology are low fabrication cost, simple process and small chip area for PIC products.
基金Project supported by the National Natural Science Foundation of China(Nos.61131001,61404077,61571248)the Science and Technology Fund of Zhejiang Province(No.2015C31090)+2 种基金the Natural Science Foundation of Ningbo(No.2014A610147)State Key Laboratory of ASIC&System(No.2015KF006)the K.C.Wong Magna Fund in Ningbo University
文摘Carbon nanotube field effect transistor(CNFET) shows lower threshold voltage and smaller leakage current in comparison to its CMOS counterpart. In this paper, two kinds of CNFET-based rectifiers, full-wave rectifiers and voltage doubler rectifiers are presented for biomedical implantable applications. Based on the standard 32 nm CNFET model, the electrical performance of CNFET rectifiers is analyzed and compared. Simulation results show the voltage conversion efficiency(VCE) and power conversion efficiency(PCE) achieve 70.82% and 72.49% for CNFET full-wave rectifiers and 56.60% and 61.17% for CNFET voltage double rectifiers at typical 1.0 V input voltage excitation, which are higher than that of CMOS design. Moreover, considering the controllable property of CNFET threshold voltage, the effect of various design parameters on the electrical performance is investigated.It is observed that the VCE and PCE of CNFET rectifier increase with increasing CNT diameter and number of tubes. The proposed results would provide some guidelines for design and optimization of CNFET-based rectifier circuits.
文摘Chinese medical companies share health benefits with the Belt and Road communityWang Zhao works in Beijing but her work helps people in faraway places.She develops intraocular lenses,to be implanted in the eyes of patients undergoing surgery for cataract or myopia,at EyebrightMedical Technology(Beijing)Co.