The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part o...The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part of the operator and an implicit Euler discretization of the linear part. Finite difference schemes are used for the spatial part. This finally leads to the numerical solution of a sparse linear system that can be solved efficiently.展开更多
In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(...In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.展开更多
Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order tim...Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.展开更多
A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segme...A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segment explicit-implicit difference scheme for solving the KdV equation is constructed. The scheme is linear unconditionally stable by the analysis of linearization procedure, and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.展开更多
In this paper, we are going to derive four numerical methods for solving the Modified Kortweg-de Vries (MKdV) equation using fourth Pade approximation for space direction and Crank Nicolson in the time direction. Two ...In this paper, we are going to derive four numerical methods for solving the Modified Kortweg-de Vries (MKdV) equation using fourth Pade approximation for space direction and Crank Nicolson in the time direction. Two nonlinear schemes and two linearized schemes are presented. All resulting schemes will be analyzed for accuracy and stability. The exact solution and the conserved quantities are used to highlight the efficiency and the robustness of the proposed schemes. Interaction of two and three solitons will be also conducted. The numerical results show that the interaction behavior is elastic and the conserved quantities are conserved exactly, and this is a good indication of the reliability of the schemes which we derived. A comparison with some existing is presented as well.展开更多
Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly im...Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly implicit alternating sweeping is implemented in the direction of the third dimension. Very rapid convergence rate is obtained with CFL number reaching the order of 100. The memory resources can be greatly saved too. It is verified that the reflection boundary condition can not be used with flux vector splitting since it will produce too large numerical dissipation. The computed flow fields agree well with experimental results. Only one or two grid points are there within the shock transition zone.展开更多
We study numerical methods for level set like equations arising in image processing and curve evolution problems. Semi-implicit finite volume-element type schemes are constructed for the general level set like equati...We study numerical methods for level set like equations arising in image processing and curve evolution problems. Semi-implicit finite volume-element type schemes are constructed for the general level set like equation (image selective smoothing model) given by Alvarez et al. (Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion II. SIAM J. Numer. Anal., 1992, 29: 845-866). Through the reasonable semi-implicit discretization in time and co-volume method for space approximation, we give finite volume schemes, unconditionally stable in L∞ and W1'2 (W1'1) sense in isotropic (anisotropic) diffu- sion domain.展开更多
Many interesting applications of hyperbolic systems of equations are stiff,and require the time step to satisfy restrictive stability conditions.One way to avoid small time steps is to use implicit time integration.Im...Many interesting applications of hyperbolic systems of equations are stiff,and require the time step to satisfy restrictive stability conditions.One way to avoid small time steps is to use implicit time integration.Implicit integration is quite straightforward for first-order schemes.High order schemes instead also need to control spurious oscillations,which requires limiting in space and time also in the linear case.We propose a framework to simplify considerably the application of high order non-oscillatory schemes through the introduction of a low order implicit predictor,which is used both to set up the nonlinear weights of a standard high order space reconstruction,and to achieve limiting in time.In this preliminary work,we concentrate on the case of a third-order scheme,based on diagonally implicit Runge Kutta(DIRK)integration in time and central weighted essentially non-oscillatory(CWENO)reconstruction in space.The numerical tests involve linear and nonlinear scalar conservation laws.展开更多
针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根...针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根据模型中的边界条件和初始条件设计COB-LED常温点亮实验,并基于ANSYS有限元分析软件进行仿真分析。通过比较求解结果、仿真结果和实验结果验证该数学模型的合理性。结果表明,求解结果与实验结果中最高温度相对误差约23.57%,且两者的温度变化趋势一致。求解结果与仿真结果中最高温度相对误差约34.84%,且温度分布较为接近,证明了该数学模型的合理性与正确性。展开更多
The lower-upper symmetric Gauss-Seidel (LU-SGS) implicit relaxation has been widely used because it has the merits of less dependency on grid topology, low numerical complexity and modest memory requirements. In ori...The lower-upper symmetric Gauss-Seidel (LU-SGS) implicit relaxation has been widely used because it has the merits of less dependency on grid topology, low numerical complexity and modest memory requirements. In original LU-SGS scheme, the implicit system matrix is constructed based on the splitting of convective flux Jacobian according to its spectral radius. Although this treatment has the merit of reducing computational complexity and helps to ensure the diagonally dominant property of the implicit system matrix, it can also cause serious distortions on the implicit system matrix because too many approximations are introduced by this splitting method if the contravariant velocity is small or close to sonic speed. To overcome this shortcoming, an improved LU-SGS scheme with a hybrid construction method for the implicit system matrix is developed in this paper. The hybrid way is that: on the cell faces having small contravariant velocity or transonic contravariant velocity, the accurate derivative of the convective flux term is used to construct more accurate implicit system matrix, while the original Jacobian splitting method is adopted on the other cell faces to reduce computational complexity and ensure the diagonally dominant property of the implicit system matrix. To investigate the convergence performance of the improved LU-SGS scheme, 2D and 3D turbulent flows around the NACA0012 airfoil, RAE2822 airfoil and LANN wing are simulated on hybrid unstructured meshes. The nu- merical results show that the improved LU-SGS scheme is significantly more efficient than the original LU-SGS scheme.展开更多
The key problem in the computation of fluid dynamics using fine boundary-fitted grids is how to improve the numerical stability and decrease the calculating quantity. To solve this problem, implicit schemes should be ...The key problem in the computation of fluid dynamics using fine boundary-fitted grids is how to improve the numerical stability and decrease the calculating quantity. To solve this problem, implicit schemes should be adopted since explicit schemes may bring about a great increase in computation quantity according to the Courant-FrledrichsLewy condition. Whereas the adoption of implicit schemes is difficult to be realized because of the existence of two partial derivatives of surface elevations with respect to variables of alternative direction coordinates in each momentum equation in non-rectangular coordinates. With an aim to design an implicit scheme in non-reetangular ccordinates in the present paper, new momentum equations with the contravariant components of velocity vector are derived based on the shallow water dynamic equations in generalized curvilinear coordinates. In each equation, the coefficients before the two detivatives of surface elevations have different orders of magnitude, i. e., the derivative with the larger ceefficient rnay play a more important role than that with the smaller one. With this advantage, the ADI scheme can then be easily employed to improve the numerical stability and decrease the calculating quantity. The calculation in a harbour and a channel in Macau nearshore area shows that the implicit model is effective in calculating current fields in small size areas.展开更多
The previously developed single-sweep parabolized Navier-Stokes (SSPNS) space marching code for ideal gas flows has been extended to compute chemically nonequilibrium flows. In the code, the strongly coupled set of ...The previously developed single-sweep parabolized Navier-Stokes (SSPNS) space marching code for ideal gas flows has been extended to compute chemically nonequilibrium flows. In the code, the strongly coupled set of gas dynamics, species conservation, and turbulence equations is integrated with the implicit lower-upper symmetric GaussSeidel (LU-SGS) method in the streamwise direction in a space marching manner. The AUSMPW+ scheme is used to calculate the inviscid fluxes in the crossflow direction, while the conventional central scheme for the viscous fluxes. The k-g two-equation turbulence model is used. The revised SSPNS code is validated by computing the Burrows-Kurkov non-premixed H2/air supersonic combustion flows, premixed H2/air hypersonic combustion flows in a three-dimensional duct with a 15° compression ramp, as well as the hypersonic laminar chemically nonequilibrium air flows around two 10° half-angle cones. The results of these calculations are in good agreement with those of experiments, NASA UPS or Prabhu's PNS codes. It can be concluded that the SSPNS code is highly efficient for steady supersonic/ hypersonic chemically reaction flows when there is no large streamwise separation.展开更多
Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by ...Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by using a new composite implicit iteration scheme with errors. The results presented in this paper extend and improve the main results of Sun, Gu and Osilike published on J. Math. Anal. Appl.展开更多
In this paper, an explicit three_level symmetrical differencing scheme with parameters for solving parabolic partial differential equation of three_dimension will be considered. The stability condition and local trunc...In this paper, an explicit three_level symmetrical differencing scheme with parameters for solving parabolic partial differential equation of three_dimension will be considered. The stability condition and local truncation error for the scheme are r<1/2 and O( Δ t 2+ Δ x 4+ Δ y 4+ Δ z 4) ,respectively.展开更多
Most algorithms of the immersed boundary method originated by Peskin are explicit when it comes to the computation of the elastic forces exerted by the immersed boundary to the fluid. A drawback of such an explicit ap...Most algorithms of the immersed boundary method originated by Peskin are explicit when it comes to the computation of the elastic forces exerted by the immersed boundary to the fluid. A drawback of such an explicit approach is a severe restriction on the time step size for maintaining numerical stability. An implicit immersed boundary method in two dimensions using the lattice Boltzmann approach has been proposed. This paper reports an extension of the method to three dimensions and its application to simulation of a massive flexible sheet interacting with an incompressible viscous flow.展开更多
文摘The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part of the operator and an implicit Euler discretization of the linear part. Finite difference schemes are used for the spatial part. This finally leads to the numerical solution of a sparse linear system that can be solved efficiently.
文摘In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.
基金Supported by the Discipline Construction and Teaching Research Fund of LUTcte(20140089)
文摘Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.
基金Project supported by the National Natural Science Foundation of China(No.10671113)the Natural Science Foundation of Shandong Province of China(No.Y2003A04)
文摘A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segment explicit-implicit difference scheme for solving the KdV equation is constructed. The scheme is linear unconditionally stable by the analysis of linearization procedure, and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.
文摘In this paper, we are going to derive four numerical methods for solving the Modified Kortweg-de Vries (MKdV) equation using fourth Pade approximation for space direction and Crank Nicolson in the time direction. Two nonlinear schemes and two linearized schemes are presented. All resulting schemes will be analyzed for accuracy and stability. The exact solution and the conserved quantities are used to highlight the efficiency and the robustness of the proposed schemes. Interaction of two and three solitons will be also conducted. The numerical results show that the interaction behavior is elastic and the conserved quantities are conserved exactly, and this is a good indication of the reliability of the schemes which we derived. A comparison with some existing is presented as well.
文摘Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly implicit alternating sweeping is implemented in the direction of the third dimension. Very rapid convergence rate is obtained with CFL number reaching the order of 100. The memory resources can be greatly saved too. It is verified that the reflection boundary condition can not be used with flux vector splitting since it will produce too large numerical dissipation. The computed flow fields agree well with experimental results. Only one or two grid points are there within the shock transition zone.
文摘We study numerical methods for level set like equations arising in image processing and curve evolution problems. Semi-implicit finite volume-element type schemes are constructed for the general level set like equation (image selective smoothing model) given by Alvarez et al. (Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion II. SIAM J. Numer. Anal., 1992, 29: 845-866). Through the reasonable semi-implicit discretization in time and co-volume method for space approximation, we give finite volume schemes, unconditionally stable in L∞ and W1'2 (W1'1) sense in isotropic (anisotropic) diffu- sion domain.
基金MIUR(Ministry of University and Research)PRIN2017 project number 2017KKJP4XProgetto di Ateneo Sapienza,number RM120172B41DBF3A.
文摘Many interesting applications of hyperbolic systems of equations are stiff,and require the time step to satisfy restrictive stability conditions.One way to avoid small time steps is to use implicit time integration.Implicit integration is quite straightforward for first-order schemes.High order schemes instead also need to control spurious oscillations,which requires limiting in space and time also in the linear case.We propose a framework to simplify considerably the application of high order non-oscillatory schemes through the introduction of a low order implicit predictor,which is used both to set up the nonlinear weights of a standard high order space reconstruction,and to achieve limiting in time.In this preliminary work,we concentrate on the case of a third-order scheme,based on diagonally implicit Runge Kutta(DIRK)integration in time and central weighted essentially non-oscillatory(CWENO)reconstruction in space.The numerical tests involve linear and nonlinear scalar conservation laws.
文摘针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根据模型中的边界条件和初始条件设计COB-LED常温点亮实验,并基于ANSYS有限元分析软件进行仿真分析。通过比较求解结果、仿真结果和实验结果验证该数学模型的合理性。结果表明,求解结果与实验结果中最高温度相对误差约23.57%,且两者的温度变化趋势一致。求解结果与仿真结果中最高温度相对误差约34.84%,且温度分布较为接近,证明了该数学模型的合理性与正确性。
基金Foundation item: National Natural Science Foundation of China (10802067)
文摘The lower-upper symmetric Gauss-Seidel (LU-SGS) implicit relaxation has been widely used because it has the merits of less dependency on grid topology, low numerical complexity and modest memory requirements. In original LU-SGS scheme, the implicit system matrix is constructed based on the splitting of convective flux Jacobian according to its spectral radius. Although this treatment has the merit of reducing computational complexity and helps to ensure the diagonally dominant property of the implicit system matrix, it can also cause serious distortions on the implicit system matrix because too many approximations are introduced by this splitting method if the contravariant velocity is small or close to sonic speed. To overcome this shortcoming, an improved LU-SGS scheme with a hybrid construction method for the implicit system matrix is developed in this paper. The hybrid way is that: on the cell faces having small contravariant velocity or transonic contravariant velocity, the accurate derivative of the convective flux term is used to construct more accurate implicit system matrix, while the original Jacobian splitting method is adopted on the other cell faces to reduce computational complexity and ensure the diagonally dominant property of the implicit system matrix. To investigate the convergence performance of the improved LU-SGS scheme, 2D and 3D turbulent flows around the NACA0012 airfoil, RAE2822 airfoil and LANN wing are simulated on hybrid unstructured meshes. The nu- merical results show that the improved LU-SGS scheme is significantly more efficient than the original LU-SGS scheme.
文摘The key problem in the computation of fluid dynamics using fine boundary-fitted grids is how to improve the numerical stability and decrease the calculating quantity. To solve this problem, implicit schemes should be adopted since explicit schemes may bring about a great increase in computation quantity according to the Courant-FrledrichsLewy condition. Whereas the adoption of implicit schemes is difficult to be realized because of the existence of two partial derivatives of surface elevations with respect to variables of alternative direction coordinates in each momentum equation in non-rectangular coordinates. With an aim to design an implicit scheme in non-reetangular ccordinates in the present paper, new momentum equations with the contravariant components of velocity vector are derived based on the shallow water dynamic equations in generalized curvilinear coordinates. In each equation, the coefficients before the two detivatives of surface elevations have different orders of magnitude, i. e., the derivative with the larger ceefficient rnay play a more important role than that with the smaller one. With this advantage, the ADI scheme can then be easily employed to improve the numerical stability and decrease the calculating quantity. The calculation in a harbour and a channel in Macau nearshore area shows that the implicit model is effective in calculating current fields in small size areas.
基金supported by the National Natural Science Foundation of China (51176003)
文摘The previously developed single-sweep parabolized Navier-Stokes (SSPNS) space marching code for ideal gas flows has been extended to compute chemically nonequilibrium flows. In the code, the strongly coupled set of gas dynamics, species conservation, and turbulence equations is integrated with the implicit lower-upper symmetric GaussSeidel (LU-SGS) method in the streamwise direction in a space marching manner. The AUSMPW+ scheme is used to calculate the inviscid fluxes in the crossflow direction, while the conventional central scheme for the viscous fluxes. The k-g two-equation turbulence model is used. The revised SSPNS code is validated by computing the Burrows-Kurkov non-premixed H2/air supersonic combustion flows, premixed H2/air hypersonic combustion flows in a three-dimensional duct with a 15° compression ramp, as well as the hypersonic laminar chemically nonequilibrium air flows around two 10° half-angle cones. The results of these calculations are in good agreement with those of experiments, NASA UPS or Prabhu's PNS codes. It can be concluded that the SSPNS code is highly efficient for steady supersonic/ hypersonic chemically reaction flows when there is no large streamwise separation.
文摘Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by using a new composite implicit iteration scheme with errors. The results presented in this paper extend and improve the main results of Sun, Gu and Osilike published on J. Math. Anal. Appl.
文摘In this paper, an explicit three_level symmetrical differencing scheme with parameters for solving parabolic partial differential equation of three_dimension will be considered. The stability condition and local truncation error for the scheme are r<1/2 and O( Δ t 2+ Δ x 4+ Δ y 4+ Δ z 4) ,respectively.
基金supported by the US National Science Foundation (DMS-0713718)
文摘Most algorithms of the immersed boundary method originated by Peskin are explicit when it comes to the computation of the elastic forces exerted by the immersed boundary to the fluid. A drawback of such an explicit approach is a severe restriction on the time step size for maintaining numerical stability. An implicit immersed boundary method in two dimensions using the lattice Boltzmann approach has been proposed. This paper reports an extension of the method to three dimensions and its application to simulation of a massive flexible sheet interacting with an incompressible viscous flow.