Omitting viscosity along flow direction, we have simplified the dimensionless N-Sequations in arbitrary curved coordinate system as the thin layer equations. Using theimplicit approximate-factorization algorithm to so...Omitting viscosity along flow direction, we have simplified the dimensionless N-Sequations in arbitrary curved coordinate system as the thin layer equations. Using theimplicit approximate-factorization algorithm to solve the gas-phase governing equ-ations and the characteristic method to follow the tracks of particles, we then obtainedthe full coupled numerical method of two-phase.transonic, turbulent flow. Here, par- ticle size may be grouped, the subsonic boundary condition at entry of nozzle is ireatedby quasi-characteristic method in reference plane and the algebraic model is used forturbulent flow. These methods are applied in viscous two-phase flow. calculation of ro-cket nozzle and in the prediciton of thrust and specific impulse for solid propellant ro-cket motor. The calculation results are in good agreement with the measurerment va-lues. Moreover, the influences of different particle radius, different particle mass frac-tion and particle size grouped on flow field have been discussed, and the influences of particle two-dimensional radial velosity component and viscosity on specific impulse ofrocket motor have been analysed.The method of this paper possesses the advantage of saving computer time. More important, the effect is more obvious for the calculation of particle size being grouped.展开更多
Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly im...Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly implicit alternating sweeping is implemented in the direction of the third dimension. Very rapid convergence rate is obtained with CFL number reaching the order of 100. The memory resources can be greatly saved too. It is verified that the reflection boundary condition can not be used with flux vector splitting since it will produce too large numerical dissipation. The computed flow fields agree well with experimental results. Only one or two grid points are there within the shock transition zone.展开更多
Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme...Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme is applied for the time integration and a multigrid preconditioned GMRES solver is extended to solve the nonlinear system arising from each IRK stage. Several modifications to the implicit solver have been considered to achieve the efficiency enhancement and meantime to reduce the memory requirement. A variety of time-accurate viscous flow simulations are performed to assess the resulting high-order implicit DG methods. The designed order of accuracy for temporal discretization scheme is validate and the present implicit solver shows the superior performance by allowing quite large time step to be used in solving time-implicit systems. Numerical results are in good agreement with the published data and demonstrate the potential advantages of the high-order scheme in gaining both the high accuracy and the high efficiency.展开更多
This paper presents the implicit method of streamline iteration on the bases of the method of streamline itera- tion for computing two-dimensional viscous incompressible steady flow in a channel with arbitrary shape. ...This paper presents the implicit method of streamline iteration on the bases of the method of streamline itera- tion for computing two-dimensional viscous incompressible steady flow in a channel with arbitrary shape. A new total pressure equation of viscous incompressible flow is introduced in this paper and the equation is numerically computed by the implicit method. It is shown from the computational results of examples that the implicit method of streamline iteration can speed up the convergence and decrease the computational time.展开更多
文摘Omitting viscosity along flow direction, we have simplified the dimensionless N-Sequations in arbitrary curved coordinate system as the thin layer equations. Using theimplicit approximate-factorization algorithm to solve the gas-phase governing equ-ations and the characteristic method to follow the tracks of particles, we then obtainedthe full coupled numerical method of two-phase.transonic, turbulent flow. Here, par- ticle size may be grouped, the subsonic boundary condition at entry of nozzle is ireatedby quasi-characteristic method in reference plane and the algebraic model is used forturbulent flow. These methods are applied in viscous two-phase flow. calculation of ro-cket nozzle and in the prediciton of thrust and specific impulse for solid propellant ro-cket motor. The calculation results are in good agreement with the measurerment va-lues. Moreover, the influences of different particle radius, different particle mass frac-tion and particle size grouped on flow field have been discussed, and the influences of particle two-dimensional radial velosity component and viscosity on specific impulse ofrocket motor have been analysed.The method of this paper possesses the advantage of saving computer time. More important, the effect is more obvious for the calculation of particle size being grouped.
文摘Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly implicit alternating sweeping is implemented in the direction of the third dimension. Very rapid convergence rate is obtained with CFL number reaching the order of 100. The memory resources can be greatly saved too. It is verified that the reflection boundary condition can not be used with flux vector splitting since it will produce too large numerical dissipation. The computed flow fields agree well with experimental results. Only one or two grid points are there within the shock transition zone.
文摘Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme is applied for the time integration and a multigrid preconditioned GMRES solver is extended to solve the nonlinear system arising from each IRK stage. Several modifications to the implicit solver have been considered to achieve the efficiency enhancement and meantime to reduce the memory requirement. A variety of time-accurate viscous flow simulations are performed to assess the resulting high-order implicit DG methods. The designed order of accuracy for temporal discretization scheme is validate and the present implicit solver shows the superior performance by allowing quite large time step to be used in solving time-implicit systems. Numerical results are in good agreement with the published data and demonstrate the potential advantages of the high-order scheme in gaining both the high accuracy and the high efficiency.
文摘This paper presents the implicit method of streamline iteration on the bases of the method of streamline itera- tion for computing two-dimensional viscous incompressible steady flow in a channel with arbitrary shape. A new total pressure equation of viscous incompressible flow is introduced in this paper and the equation is numerically computed by the implicit method. It is shown from the computational results of examples that the implicit method of streamline iteration can speed up the convergence and decrease the computational time.