社交推荐(Social Recommendation,SoRec)模型是一类典型的融合信任信息的矩阵分解方法,在个性化推荐系统中得到了广泛的研究和应用.目前大部分SoRec模型的研究成果都是基于显式信任信息,这对于实际中难以获取显式信息的数据集无法使用,...社交推荐(Social Recommendation,SoRec)模型是一类典型的融合信任信息的矩阵分解方法,在个性化推荐系统中得到了广泛的研究和应用.目前大部分SoRec模型的研究成果都是基于显式信任信息,这对于实际中难以获取显式信息的数据集无法使用,并且现有的SoRec模型尚未充分考虑不同情形下潜在因子的多变性,大大影响了推荐的准确性.为了解决上述问题,本文针对仅有评分信息的非负目标矩阵,首先利用已知用户评分信息挖掘用户间的隐式信任关系矩阵;然后基于得到的信任信息,考虑两种不同情形下用户潜在特征矩阵的组合,提出了一种改进的SoRec(Improved Social Recommendation,ISoRec)模型;再者,通过在梯度下降算法中引入单因子乘法更新规则进行模型训练,不仅保证目标矩阵的非负性,还提高了算法在稀疏数据集的适用性.最后,本文结合真实有效的数据集对所有模型进行实验验证其有效性,结果证明ISoRec模型在精确度上有所提升.展开更多
The oil recovery enhancement is a major technical issue in the development of oil and gas fields. The smart oil field is an effective way to deal with the issue. It can achieve the maximum profits in the oil productio...The oil recovery enhancement is a major technical issue in the development of oil and gas fields. The smart oil field is an effective way to deal with the issue. It can achieve the maximum profits in the oil production at a minimum cost, and represents the future direction of oil fields. This paper discusses the core of the smart field theory, mainly the real-time optimization method of the injection-production rate of water-oil wells in a complex oil-gas filtration system. Computing speed is considered as the primary prerequisite because this research depends very much on reservoir numerical simulations and each simulation may take several hours or even days. An adjoint gradient method of the maximum theory is chosen for the solution of the optimal control variables. Conven-tional solving method of the maximum principle requires two solutions of time series: the forward reservoir simulation and the backward adjoint gradient calculation. In this paper, the two processes are combined together and a fully implicit reservoir simulator is developed. The matrixes of the adjoint equation are directly obtained from the fully implicit reservoir simulation, which accelera-tes the optimization solution and enhances the efficiency of the solving model. Meanwhile, a gradient projection algorithm combined with the maximum theory is used to constrain the parameters in the oil field development, which make it possible for the method to be applied to the water flooding optimization in a real oil field. The above theory is tested in several reservoir cases and it is shown that a better development effect of the oil field can be achieved.展开更多
文摘社交推荐(Social Recommendation,SoRec)模型是一类典型的融合信任信息的矩阵分解方法,在个性化推荐系统中得到了广泛的研究和应用.目前大部分SoRec模型的研究成果都是基于显式信任信息,这对于实际中难以获取显式信息的数据集无法使用,并且现有的SoRec模型尚未充分考虑不同情形下潜在因子的多变性,大大影响了推荐的准确性.为了解决上述问题,本文针对仅有评分信息的非负目标矩阵,首先利用已知用户评分信息挖掘用户间的隐式信任关系矩阵;然后基于得到的信任信息,考虑两种不同情形下用户潜在特征矩阵的组合,提出了一种改进的SoRec(Improved Social Recommendation,ISoRec)模型;再者,通过在梯度下降算法中引入单因子乘法更新规则进行模型训练,不仅保证目标矩阵的非负性,还提高了算法在稀疏数据集的适用性.最后,本文结合真实有效的数据集对所有模型进行实验验证其有效性,结果证明ISoRec模型在精确度上有所提升.
基金Project supported by the China Important National Science and Technology Specific Projects(Grant No.2011ZX05024-002-008)the Fundamental Research Funds for the Central Universities(Grant No.13CX02053A)the Changjiang Scholars and Innovative Reserch Team in University(Grant No.IRT1294)
文摘The oil recovery enhancement is a major technical issue in the development of oil and gas fields. The smart oil field is an effective way to deal with the issue. It can achieve the maximum profits in the oil production at a minimum cost, and represents the future direction of oil fields. This paper discusses the core of the smart field theory, mainly the real-time optimization method of the injection-production rate of water-oil wells in a complex oil-gas filtration system. Computing speed is considered as the primary prerequisite because this research depends very much on reservoir numerical simulations and each simulation may take several hours or even days. An adjoint gradient method of the maximum theory is chosen for the solution of the optimal control variables. Conven-tional solving method of the maximum principle requires two solutions of time series: the forward reservoir simulation and the backward adjoint gradient calculation. In this paper, the two processes are combined together and a fully implicit reservoir simulator is developed. The matrixes of the adjoint equation are directly obtained from the fully implicit reservoir simulation, which accelera-tes the optimization solution and enhances the efficiency of the solving model. Meanwhile, a gradient projection algorithm combined with the maximum theory is used to constrain the parameters in the oil field development, which make it possible for the method to be applied to the water flooding optimization in a real oil field. The above theory is tested in several reservoir cases and it is shown that a better development effect of the oil field can be achieved.