Nonlinear dynamic equations can be solved accurately using a precise integration method. Some algorithms exist, but the inversion of a matrix must be calculated for these al- gorithms. If the inversion of the matrix d...Nonlinear dynamic equations can be solved accurately using a precise integration method. Some algorithms exist, but the inversion of a matrix must be calculated for these al- gorithms. If the inversion of the matrix doesn’t exist or isn’t stable, the precision and stability of the algorithms will be afected. An explicit series solution of the state equation has been pre- sented. The solution avoids calculating the inversion of a matrix and its precision can be easily controlled. In this paper, an implicit series solution of nonlinear dynamic equations is presented. The algorithm is more precise and stable than the explicit series solution and isn’t sensitive to the time-step. Finally, a numerical example is presented to demonstrate the efectiveness of the algorithm.展开更多
Natural gas hydrate, as a potential energy resource, deposits in permafrost and marine sediment with large quantities. The current exploitation methods include depressurization, thermal stimulation, and inhibitor inje...Natural gas hydrate, as a potential energy resource, deposits in permafrost and marine sediment with large quantities. The current exploitation methods include depressurization, thermal stimulation, and inhibitor injection. However, many issues have to be resolved before the commercial production. In the present study, a 2-D axisymmetric simulator for gas production from hydrate reservoirs is developed. The simulator includes equations of conductive and convective heat transfer, kinetic of hydrate decomposition, and multiphase flow. These equations are discretized based on the finite difference method and are solved with the fully implicit simultaneous solution method. The process of laboratory-scale hydrate decomposition by depressurization is simulated. For different surrounding temperatures and outlet pressures, time evolutions of gas and water generations during hydrate dissociation are evaluated, and variations of temperature, pressure, and multiphase fluid flow conditions are analyzed. The results suggest that the rate of heat transfer plays an important role in the process. Furthermore, high surrounding temperature and low outlet valve pressure may increase the rate of hydrate dissociation with insignificant impact on final cumulative gas volume.展开更多
Integrable systems play a crucial role in physics and mathematics.In particular,the traditional(1+1)-dimensional and(2+1)-dimensional integrable systems have received significant attention due to the rarity of integra...Integrable systems play a crucial role in physics and mathematics.In particular,the traditional(1+1)-dimensional and(2+1)-dimensional integrable systems have received significant attention due to the rarity of integrable systems in higher dimensions.Recent studies have shown that abundant higher-dimensional integrable systems can be constructed from(1+1)-dimensional integrable systems by using a deformation algorithm.Here we establish a new(2+1)-dimensional Chen-Lee-Liu(C-L-L)equation using the deformation algorithm from the(1+1)-dimensional C-L-L equation.The new system is integrable with its Lax pair obtained by applying the deformation algorithm to that of the(1+1)-dimension.It is challenging to obtain the exact solutions for the new integrable system because the new system combines both the original C-L-L equation and its reciprocal transformation.The traveling wave solutions are derived in implicit function expression,and some asymmetry peakon solutions are found.展开更多
The problem of finite deformation of an incompressible rectangular rubber ring with an internal rigid body, where the ring is subjected to equal axial loads at its two ends, is examined. A reasonable mathematical mode...The problem of finite deformation of an incompressible rectangular rubber ring with an internal rigid body, where the ring is subjected to equal axial loads at its two ends, is examined. A reasonable mathematical model is formulated by using the nonlinear field theory and the implicit analytical solutions are derived. Then numerical simulations are implemented to further illustrate the results and obtain some meaningful conclusions. The deformation of the lateral surface of the ring becomes larger with the increasing axial loads, the decreasing ratio of the inner and outer radii and the increasing height of the ring.展开更多
A novel(2+1)-dimensional nonlinear Boussinesq equation is derived from a(1+1)-dimensional Boussinesq equation in nonlinear Schr?dinger type based on a deformation algorithm.The integrability of the obtained(2+1)-dimen...A novel(2+1)-dimensional nonlinear Boussinesq equation is derived from a(1+1)-dimensional Boussinesq equation in nonlinear Schr?dinger type based on a deformation algorithm.The integrability of the obtained(2+1)-dimensional Boussinesq equation is guaranteed by its Lax pair obtained directly from the Lax pair of the(1+1)-dimensional Boussinesq equation.Because of the effects of the deformation,the(2+1)-dimensional Boussinesq equation admits a special travelling wave solution with a shape that can be deformed to be asymmetric and/or multivalued.展开更多
We give a classification of second-order polynomial solutions for the homogeneous k-Hessian equation σ_k[u] = 0. There are only two classes of polynomial solutions: One is convex polynomial; another one must not be(k...We give a classification of second-order polynomial solutions for the homogeneous k-Hessian equation σ_k[u] = 0. There are only two classes of polynomial solutions: One is convex polynomial; another one must not be(k + 1)-convex, and in the second case, the k-Hessian equations are uniformly elliptic with respect to that solution. Based on this classification, we obtain the existence of C∞local solution for nonhomogeneous term f without sign assumptions.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.60273048and60174023).
文摘Nonlinear dynamic equations can be solved accurately using a precise integration method. Some algorithms exist, but the inversion of a matrix must be calculated for these al- gorithms. If the inversion of the matrix doesn’t exist or isn’t stable, the precision and stability of the algorithms will be afected. An explicit series solution of the state equation has been pre- sented. The solution avoids calculating the inversion of a matrix and its precision can be easily controlled. In this paper, an implicit series solution of nonlinear dynamic equations is presented. The algorithm is more precise and stable than the explicit series solution and isn’t sensitive to the time-step. Finally, a numerical example is presented to demonstrate the efectiveness of the algorithm.
基金supported by the National High Technology Research and Development Program of China(863 Program, Grant No.2006AA09A209-5)the National Natural Science Foundation of China (Key Program,Grant No.50736001)the Major Research Project of Ministry of Education of China (Grant No.306005)
文摘Natural gas hydrate, as a potential energy resource, deposits in permafrost and marine sediment with large quantities. The current exploitation methods include depressurization, thermal stimulation, and inhibitor injection. However, many issues have to be resolved before the commercial production. In the present study, a 2-D axisymmetric simulator for gas production from hydrate reservoirs is developed. The simulator includes equations of conductive and convective heat transfer, kinetic of hydrate decomposition, and multiphase flow. These equations are discretized based on the finite difference method and are solved with the fully implicit simultaneous solution method. The process of laboratory-scale hydrate decomposition by depressurization is simulated. For different surrounding temperatures and outlet pressures, time evolutions of gas and water generations during hydrate dissociation are evaluated, and variations of temperature, pressure, and multiphase fluid flow conditions are analyzed. The results suggest that the rate of heat transfer plays an important role in the process. Furthermore, high surrounding temperature and low outlet valve pressure may increase the rate of hydrate dissociation with insignificant impact on final cumulative gas volume.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275144,12235007,and 11975131)K.C.Wong Magna Fund in Ningbo University。
文摘Integrable systems play a crucial role in physics and mathematics.In particular,the traditional(1+1)-dimensional and(2+1)-dimensional integrable systems have received significant attention due to the rarity of integrable systems in higher dimensions.Recent studies have shown that abundant higher-dimensional integrable systems can be constructed from(1+1)-dimensional integrable systems by using a deformation algorithm.Here we establish a new(2+1)-dimensional Chen-Lee-Liu(C-L-L)equation using the deformation algorithm from the(1+1)-dimensional C-L-L equation.The new system is integrable with its Lax pair obtained by applying the deformation algorithm to that of the(1+1)-dimension.It is challenging to obtain the exact solutions for the new integrable system because the new system combines both the original C-L-L equation and its reciprocal transformation.The traveling wave solutions are derived in implicit function expression,and some asymmetry peakon solutions are found.
基金supported by the National Natural Science Foundation of China (Nos. 10872045, 10721062 and 10772104)the Program for New Century Excellent Talents in University (No. NCET-09-0096)the Fundamental Research Funds for the Central Universities
文摘The problem of finite deformation of an incompressible rectangular rubber ring with an internal rigid body, where the ring is subjected to equal axial loads at its two ends, is examined. A reasonable mathematical model is formulated by using the nonlinear field theory and the implicit analytical solutions are derived. Then numerical simulations are implemented to further illustrate the results and obtain some meaningful conclusions. The deformation of the lateral surface of the ring becomes larger with the increasing axial loads, the decreasing ratio of the inner and outer radii and the increasing height of the ring.
基金support of the National Natural Science Foundation of China(Nos.12275144,12235007 and 11975131)the K C Wong Magna Fund at Ningbo University。
文摘A novel(2+1)-dimensional nonlinear Boussinesq equation is derived from a(1+1)-dimensional Boussinesq equation in nonlinear Schr?dinger type based on a deformation algorithm.The integrability of the obtained(2+1)-dimensional Boussinesq equation is guaranteed by its Lax pair obtained directly from the Lax pair of the(1+1)-dimensional Boussinesq equation.Because of the effects of the deformation,the(2+1)-dimensional Boussinesq equation admits a special travelling wave solution with a shape that can be deformed to be asymmetric and/or multivalued.
基金supported by National Natural Science Foundation of China (Grant Nos. 11171339 and 11171261)National Center for Mathematics and Interdisciplinary Sciences
文摘We give a classification of second-order polynomial solutions for the homogeneous k-Hessian equation σ_k[u] = 0. There are only two classes of polynomial solutions: One is convex polynomial; another one must not be(k + 1)-convex, and in the second case, the k-Hessian equations are uniformly elliptic with respect to that solution. Based on this classification, we obtain the existence of C∞local solution for nonhomogeneous term f without sign assumptions.