针对新发展的、能够描述循环硬化行为应变幅值依赖性的粘塑性本构模型,讨论了它的数值实现方法。首先,为了能够对材料的循环棘轮行为(R atcheting)和循环应力松弛现象进行描述,对已有的本构模型进行了改进;然后,在改进模型的基础上,建...针对新发展的、能够描述循环硬化行为应变幅值依赖性的粘塑性本构模型,讨论了它的数值实现方法。首先,为了能够对材料的循环棘轮行为(R atcheting)和循环应力松弛现象进行描述,对已有的本构模型进行了改进;然后,在改进模型的基础上,建立了一个新的、全隐式应力积分算法,进而推导了相应的一致切线刚度(Con-s isten t T angen tM odu lus)矩阵的表达式;最后,通过ABAQU S用户材料子程序UM AT将上述本构模型进行了有限元实现,并通过一些算例对一些构件的循环变形行为进行了有限元数值模拟,讨论了该类本构模型有限元实现的必要性和合理性。展开更多
文摘针对新发展的、能够描述循环硬化行为应变幅值依赖性的粘塑性本构模型,讨论了它的数值实现方法。首先,为了能够对材料的循环棘轮行为(R atcheting)和循环应力松弛现象进行描述,对已有的本构模型进行了改进;然后,在改进模型的基础上,建立了一个新的、全隐式应力积分算法,进而推导了相应的一致切线刚度(Con-s isten t T angen tM odu lus)矩阵的表达式;最后,通过ABAQU S用户材料子程序UM AT将上述本构模型进行了有限元实现,并通过一些算例对一些构件的循环变形行为进行了有限元数值模拟,讨论了该类本构模型有限元实现的必要性和合理性。