With the help of the Maple symbolic computation system and the projective equation approach,a new family of variable separation solutions with arbitrary functions for the(2+1)-dimensional generalized Breor-Kaup(GB...With the help of the Maple symbolic computation system and the projective equation approach,a new family of variable separation solutions with arbitrary functions for the(2+1)-dimensional generalized Breor-Kaup(GBK) system is derived.Based on the derived solitary wave solution,some chaotic behaviors of the GBK system are investigated.展开更多
The cross-efficiency evaluation method is reviewed which is developed as a data envelopment analysis (DEA) extensive tool. The cross-efficiency evaluation method is utilized to identify the decision making unit (DM...The cross-efficiency evaluation method is reviewed which is developed as a data envelopment analysis (DEA) extensive tool. The cross-efficiency evaluation method is utilized to identify the decision making unit (DMU) with the best practice and to rank the DMUs by their respective cross-efficiency scores. The main drawbacks of the cross-efficiency evaluation method when the ultimate average cross-efficiency scores are used to evalu- ate and rank the DMUs are also pointed out. With the research gap, an improved technique for order preference by similarity to ideal solution (TOPSIS) is introduced to rank the crossfficiency by eliminating the average assumption. Finally, an empirical example is illustrated to examine the validity of the proposed method.展开更多
The watermiscible room temperature ionic liquid 1butyl3methylimidazolium tetrafluorob orate ([bmim] [BF4]) is a model system for studying the interactions between ionic liquid and water molecules. In this work the o...The watermiscible room temperature ionic liquid 1butyl3methylimidazolium tetrafluorob orate ([bmim] [BF4]) is a model system for studying the interactions between ionic liquid and water molecules. In this work the orientational structure of the low concentrated aqueous solution of [bmim] [BF4] at the air/liquid interface was investigated by sum frequency gener ation vibrational spectroscopy. It has been found that at very low concentrations, the butyl chain exhibited a significant gauche defect, indicating a disordered conformation; and the cation ring oriented with a fairly small tilting angle at the surface. When the concentration increased, the cation ring tended to lie flat at the surface, and the gauche defects of the butyl chain decreased due to the intermolecular chainchain interactions and the consequent more ordered interfacial molecular arrangement. Additionally, the antisymmetric stretching mode in the PPP and SPS spectra exhibited a peak shift, showing that there exists more than one kind of orientation or chemical environment for the butyl CH3 group. These results may shed new light on understanding the surface behavior of watermiscible ionic liquids as well as the imidazolium based surfactants.展开更多
In this article, we study the initial boundary value problem of generalized Pochhammer-Chree equation utt-uxx-uxxt-uxxtt=f(u)xx,x∈Ω,t〉0,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω,u(0,t)=u(1,t)=0,t≥0, where Ω...In this article, we study the initial boundary value problem of generalized Pochhammer-Chree equation utt-uxx-uxxt-uxxtt=f(u)xx,x∈Ω,t〉0,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω,u(0,t)=u(1,t)=0,t≥0, where Ω = (0, 1). First, we obtain the existence of local Wkp solutions. Then, we prove that, if f(s) ∈ Ck+1(R) is nondecreasing, f(0) = 0 and |f(u)| ≤ C1|u|∫0uf(s)ds + C2, u0(x),u1(x) ∈ WkP(Ω) ∩ W01,P(Ω), k≥ 1, 1 〈 p≤ ∞, then for any T 〉 0 the problem admits a unique solution u(x, t) ∈ W2,∞(0, T; WkP(Ω) ∩ W01,P(Ω)). Finally, the finite time blow-up of solutions and global Wkp solution of generalized IMBo equations are discussed.展开更多
New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebr...New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebraic operation. The examples of (V, ρ)_(h,φ)-type I functions are given. The sufficient optimality conditions are obtained for multi-objective programming problem involving above new generalized convexity.展开更多
In this letter, we construct a kind of new Darboux transformation for the (1+1)-dimensional higher-order Broer-Kaup (HBK) system with the help of a gauge transformation of a spectral problem. By applying this new...In this letter, we construct a kind of new Darboux transformation for the (1+1)-dimensional higher-order Broer-Kaup (HBK) system with the help of a gauge transformation of a spectral problem. By applying this new Darboux transformation, some new soliton-like solutions of the (1+1)-dimensional HBK system are obtained.展开更多
In this paper,by means of similarity transfomations,we obtain explicit solutions to the cubic-quintic nonlinear Schr顜僤inger equation with varying coefficients,which involve four free functions of space.Four types of...In this paper,by means of similarity transfomations,we obtain explicit solutions to the cubic-quintic nonlinear Schr顜僤inger equation with varying coefficients,which involve four free functions of space.Four types of free functions are chosen to exhibit the corresponding nonlinear wave propagations.展开更多
Sound propagation in a wedge-shaped waveguide with perfectly reflecting boundaries is one of the few range- dependent problems with an analytical solution, and hence provides an ideal benchmark for a full two-way solu...Sound propagation in a wedge-shaped waveguide with perfectly reflecting boundaries is one of the few range- dependent problems with an analytical solution, and hence provides an ideal benchmark for a full two-way solution to the wave equation. An analytical solution for the sound propagation in an ideal wedge with a pressure-release bottom was presented by Buckingham and Tolstoy [Buckingham and Tolstoy 1990 J. Acoust. Soc. Am. 87 1511]. The ideal wedge problem with a rigid bottom is also of great importance in underwater acoustics. We present an analytical solution to the ideal wedge problem with a perfectly reflecting bottom, either rigid or pressure-release, which may be used to provide a means for investigating the sound field in depth-varying channels, and to establish the accuracy of numerical propagation models. Closed-form expressions for coupling matrices are also provided for the ideal waveguides characterized by a ho- mogeneous water column bounded by perfectly reflecting boundaries. A comparison between the analytical solution and the numerical solution recently proposed by Luo et al. [Luo W Y, Yang C M and Zhang R H 2012 Chin. Phys. Lett. 29 014302] is also presented, through which the accuracy of this numerical model is illustrated.展开更多
This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification o...This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.展开更多
This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general...This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general method of constructing nonstationary solutions. It obtains the unique features about general evolution and soliton evolution of nonstationary solutions in this model.展开更多
In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the cont...In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the context of classical solutions.We prove the uniform estimates with respect to the Knudsen numberεfor the solutions to the two-species VPB system near equilibrium by treating the strong interspecies interactions.Consequently,we prove the convergence to the two-fluid incompressible NSFP asεgoes to 0.展开更多
In this paper, we investigate the periodic wave solutions and solitary wave solutions of a (2+1)-dimensional Korteweg-de Vries (KDV) equation</span><span style="font-size:10pt;font-family:"">...In this paper, we investigate the periodic wave solutions and solitary wave solutions of a (2+1)-dimensional Korteweg-de Vries (KDV) equation</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">by applying Jacobi elliptic function expansion method. Abundant types of Jacobi elliptic function solutions are obtained by choosing different </span><span style="font-size:10.0pt;font-family:"">coefficient</span><span style="font-size:10.0pt;font-family:"">s</span><span style="font-size:10pt;font-family:""> <i>p</i>, <i>q</i> and <i>r</i> in the</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">elliptic equation. Then these solutions are</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">coupled into an auxiliary equation</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">and substituted into the (2+1)-dimensional KDV equation. As <span>a result,</span></span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">a large number of complex Jacobi elliptic function solutions are ob</span><span style="font-size:10pt;font-family:"">tained, and many of them have not been found in other documents. As</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10.0pt;font-family:""><span></span></span><span style="font-size:10pt;font-family:"">, some complex solitary solutions are also obtained correspondingly.</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">These solutions that we obtained in this paper will be helpful to understand the physics of the (2+1)-dimensional KDV equation.展开更多
This paper studies a class of general BAM neural networks with multiple delays. Em- ploying the exponential dichotomy theory and fixed point method, together with constructing suitable Lyapunov functionals, easily ver...This paper studies a class of general BAM neural networks with multiple delays. Em- ploying the exponential dichotomy theory and fixed point method, together with constructing suitable Lyapunov functionals, easily verifiable delay-independent criteria are established to ensure the exis- tence and global exponential stability of pseudo almost periodic solutions, which not only generalize but also complement some existing ones. These theoretical results are also supported with numerical simulations.展开更多
The generalized binary Darboux transformation for the (1 +2)-dimensional non-isospectral KP-H equation is presented. Moreover, as a direct application, the new rogue wave solutions for the (1+2)-dimensional non-...The generalized binary Darboux transformation for the (1 +2)-dimensional non-isospectral KP-H equation is presented. Moreover, as a direct application, the new rogue wave solutions for the (1+2)-dimensional non-isospectral KP-II equation are constructed by the generalized binary Darboux transformation.展开更多
Differential-difference equations are considered to be hybrid systems because the spatial variable n is discrete while the time t is usually kept continuous.Although a considerable amount of research has been carried ...Differential-difference equations are considered to be hybrid systems because the spatial variable n is discrete while the time t is usually kept continuous.Although a considerable amount of research has been carried out in the field of nonlinear differential-difference equations,the majority of the results deal with polynomial types.Limited research has been reported regarding such equations of rational type.In this paper we present an adaptation of the(G /G)-expansion method to solve nonlinear rational differential-difference equations.The procedure is demonstrated using two distinct equations.Our approach allows one to construct three types of exact traveling wave solutions(hyperbolic,trigonometric,and rational) by means of the simplified form of the auxiliary equation method with reduced parameters.Our analysis leads to analytic solutions in terms of topological solitons and singular periodic functions as well.展开更多
In this paper, we give the expression of the least square solution of the linear quaternion matrix equation AXB = C subject to a consistent system of quaternion matrix equations D1X = F1, XE2 =F2, and derive the maxim...In this paper, we give the expression of the least square solution of the linear quaternion matrix equation AXB = C subject to a consistent system of quaternion matrix equations D1X = F1, XE2 =F2, and derive the maximal and minimal ranks and the leastnorm of the above mentioned solution. The finding of this paper extends some known results in the literature.展开更多
Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial d...Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.展开更多
Since 1974, studying the original delay differential equation given by Kaplan and Yorke is about the problem on the existence of its periodic solutions, there have been a series of interesting and significant results ...Since 1974, studying the original delay differential equation given by Kaplan and Yorke is about the problem on the existence of its periodic solutions, there have been a series of interesting and significant results in the previous literature. In this paper, we present a survey of some basic results. Some interesting open problems are also展开更多
In this paper, we consider a modified Leslie-Clower predator prey model with Holling- type II schemes and mutual interference. By applying the comparison theorem of the differential equation and constructing a suitabl...In this paper, we consider a modified Leslie-Clower predator prey model with Holling- type II schemes and mutual interference. By applying the comparison theorem of the differential equation and constructing a suitable Lyapunov function, sufficient conditions which guarantee the permanence and existence of a unique globally attractive positive almost periodic solution of the system are obtained. Our results not only supplement but also improve some existing ones.展开更多
Considering the fact that the production and provision of some vaccines are ordered and governed by the government according to the history data of disease, a kind of SIR model with constant vaccination rate and impul...Considering the fact that the production and provision of some vaccines are ordered and governed by the government according to the history data of disease, a kind of SIR model with constant vaccination rate and impulsive state feedback control is presented. The dynamical properties of semi-continuous three-dimensional SIR system can be obtained by discussing the properties of the corresponding two-dimensional system in the limit set. The existence and uniqueness of order-1 periodic solution are discussed by using the successive function and the compression mapping theorem. A new theorem for the orbital stability of order-1 periodic solution is proved by geometric method. Finally, numerical simulations are given to verify the mathematical results and some conclusions are given. The results show that the disease can be controlled to a lower level by means of impulsive state feedback control strategy, but cannot be eradicated.展开更多
基金Project supported by the Natural Science Foundation of Zhejiang Province,China (Grant Nos. Y6100257,Y6090545,and Y6110140)the Scientific Research Fund of Zhejiang Provincial Education Department,China (Grant No. Z201120169)
文摘With the help of the Maple symbolic computation system and the projective equation approach,a new family of variable separation solutions with arbitrary functions for the(2+1)-dimensional generalized Breor-Kaup(GBK) system is derived.Based on the derived solitary wave solution,some chaotic behaviors of the GBK system are investigated.
基金supported by the National Natural Science Foundation of China for Innovative Research Groups(70821001),the National Natural Science Foundation of China(70901069)the Special Fund for the Gainers of Excellent Ph.D.'s Dissertations and Dean's Scholarships of Chinese Academy of Sciences,the Research Fund for the Doctoral Program of Higher Education of China for New Teachers(20093402120013)+1 种基金the Research Fund for the Excellent Youth Scholars of Higher School of Anhui Province of China(2010SQRW001ZD)the Social Science Research Fund for Higher School of Anhui Province of China
文摘The cross-efficiency evaluation method is reviewed which is developed as a data envelopment analysis (DEA) extensive tool. The cross-efficiency evaluation method is utilized to identify the decision making unit (DMU) with the best practice and to rank the DMUs by their respective cross-efficiency scores. The main drawbacks of the cross-efficiency evaluation method when the ultimate average cross-efficiency scores are used to evalu- ate and rank the DMUs are also pointed out. With the research gap, an improved technique for order preference by similarity to ideal solution (TOPSIS) is introduced to rank the crossfficiency by eliminating the average assumption. Finally, an empirical example is illustrated to examine the validity of the proposed method.
文摘The watermiscible room temperature ionic liquid 1butyl3methylimidazolium tetrafluorob orate ([bmim] [BF4]) is a model system for studying the interactions between ionic liquid and water molecules. In this work the orientational structure of the low concentrated aqueous solution of [bmim] [BF4] at the air/liquid interface was investigated by sum frequency gener ation vibrational spectroscopy. It has been found that at very low concentrations, the butyl chain exhibited a significant gauche defect, indicating a disordered conformation; and the cation ring oriented with a fairly small tilting angle at the surface. When the concentration increased, the cation ring tended to lie flat at the surface, and the gauche defects of the butyl chain decreased due to the intermolecular chainchain interactions and the consequent more ordered interfacial molecular arrangement. Additionally, the antisymmetric stretching mode in the PPP and SPS spectra exhibited a peak shift, showing that there exists more than one kind of orientation or chemical environment for the butyl CH3 group. These results may shed new light on understanding the surface behavior of watermiscible ionic liquids as well as the imidazolium based surfactants.
基金supported by National Natural Science Foundation of China(10871055,10926149)Natural Science Foundation of Heilongjiang Province (A2007-02+2 种基金A200810)Science and Technology Foundation of Education Office of Heilongjiang Province(11541276)Foundational Science Founda-tion of Harbin Engineering University
文摘In this article, we study the initial boundary value problem of generalized Pochhammer-Chree equation utt-uxx-uxxt-uxxtt=f(u)xx,x∈Ω,t〉0,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω,u(0,t)=u(1,t)=0,t≥0, where Ω = (0, 1). First, we obtain the existence of local Wkp solutions. Then, we prove that, if f(s) ∈ Ck+1(R) is nondecreasing, f(0) = 0 and |f(u)| ≤ C1|u|∫0uf(s)ds + C2, u0(x),u1(x) ∈ WkP(Ω) ∩ W01,P(Ω), k≥ 1, 1 〈 p≤ ∞, then for any T 〉 0 the problem admits a unique solution u(x, t) ∈ W2,∞(0, T; WkP(Ω) ∩ W01,P(Ω)). Finally, the finite time blow-up of solutions and global Wkp solution of generalized IMBo equations are discussed.
基金Supported by the NSF of Shaanxi Provincial Educational Department(06JK152)
文摘New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebraic operation. The examples of (V, ρ)_(h,φ)-type I functions are given. The sufficient optimality conditions are obtained for multi-objective programming problem involving above new generalized convexity.
基金The project partially supported by the State Key Basic Pesearch Program of China under Grant No. 2004CB318000
文摘In this letter, we construct a kind of new Darboux transformation for the (1+1)-dimensional higher-order Broer-Kaup (HBK) system with the help of a gauge transformation of a spectral problem. By applying this new Darboux transformation, some new soliton-like solutions of the (1+1)-dimensional HBK system are obtained.
基金Project supported by the Scientific Research Foundation of Lishui University,China (Grant No. KZ201110)
文摘In this paper,by means of similarity transfomations,we obtain explicit solutions to the cubic-quintic nonlinear Schr顜僤inger equation with varying coefficients,which involve four free functions of space.Four types of free functions are chosen to exhibit the corresponding nonlinear wave propagations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11125420 and 10734100)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘Sound propagation in a wedge-shaped waveguide with perfectly reflecting boundaries is one of the few range- dependent problems with an analytical solution, and hence provides an ideal benchmark for a full two-way solution to the wave equation. An analytical solution for the sound propagation in an ideal wedge with a pressure-release bottom was presented by Buckingham and Tolstoy [Buckingham and Tolstoy 1990 J. Acoust. Soc. Am. 87 1511]. The ideal wedge problem with a rigid bottom is also of great importance in underwater acoustics. We present an analytical solution to the ideal wedge problem with a perfectly reflecting bottom, either rigid or pressure-release, which may be used to provide a means for investigating the sound field in depth-varying channels, and to establish the accuracy of numerical propagation models. Closed-form expressions for coupling matrices are also provided for the ideal waveguides characterized by a ho- mogeneous water column bounded by perfectly reflecting boundaries. A comparison between the analytical solution and the numerical solution recently proposed by Luo et al. [Luo W Y, Yang C M and Zhang R H 2012 Chin. Phys. Lett. 29 014302] is also presented, through which the accuracy of this numerical model is illustrated.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10771019 and 10826107)
文摘This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.
基金supported by the National Natural Science Foundation of China (Grant No. 1057411)the Foundation for Researching Group by Beijing Normal Universitythe Foundation for Outstanding Doctoral Dissertation by Beijing Normal University
文摘This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general method of constructing nonstationary solutions. It obtains the unique features about general evolution and soliton evolution of nonstationary solutions in this model.
文摘In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the context of classical solutions.We prove the uniform estimates with respect to the Knudsen numberεfor the solutions to the two-species VPB system near equilibrium by treating the strong interspecies interactions.Consequently,we prove the convergence to the two-fluid incompressible NSFP asεgoes to 0.
文摘In this paper, we investigate the periodic wave solutions and solitary wave solutions of a (2+1)-dimensional Korteweg-de Vries (KDV) equation</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">by applying Jacobi elliptic function expansion method. Abundant types of Jacobi elliptic function solutions are obtained by choosing different </span><span style="font-size:10.0pt;font-family:"">coefficient</span><span style="font-size:10.0pt;font-family:"">s</span><span style="font-size:10pt;font-family:""> <i>p</i>, <i>q</i> and <i>r</i> in the</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">elliptic equation. Then these solutions are</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">coupled into an auxiliary equation</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">and substituted into the (2+1)-dimensional KDV equation. As <span>a result,</span></span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">a large number of complex Jacobi elliptic function solutions are ob</span><span style="font-size:10pt;font-family:"">tained, and many of them have not been found in other documents. As</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10.0pt;font-family:""><span></span></span><span style="font-size:10pt;font-family:"">, some complex solitary solutions are also obtained correspondingly.</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">These solutions that we obtained in this paper will be helpful to understand the physics of the (2+1)-dimensional KDV equation.
基金supported by the National Natural Science Foundation of China under Grant No.11701007Key Program of University Natural Science Research Fund of Anhui Province under Grant No.KJ2017A088+1 种基金Key Program of Scientific Research Fund for Young Teachers of Anhui University of Science and Technology under Grant No.QN201605the Doctoral Fund of Anhui University of Science and Technology under Grant No.11668
文摘This paper studies a class of general BAM neural networks with multiple delays. Em- ploying the exponential dichotomy theory and fixed point method, together with constructing suitable Lyapunov functionals, easily verifiable delay-independent criteria are established to ensure the exis- tence and global exponential stability of pseudo almost periodic solutions, which not only generalize but also complement some existing ones. These theoretical results are also supported with numerical simulations.
基金Supported by the National Natural Science Foundation of China under Grant No. 11061003 and Guangxi Natural Science Foundation under Grant No. 2013GXNSFAA019001
文摘The generalized binary Darboux transformation for the (1 +2)-dimensional non-isospectral KP-H equation is presented. Moreover, as a direct application, the new rogue wave solutions for the (1+2)-dimensional non-isospectral KP-II equation are constructed by the generalized binary Darboux transformation.
文摘Differential-difference equations are considered to be hybrid systems because the spatial variable n is discrete while the time t is usually kept continuous.Although a considerable amount of research has been carried out in the field of nonlinear differential-difference equations,the majority of the results deal with polynomial types.Limited research has been reported regarding such equations of rational type.In this paper we present an adaptation of the(G /G)-expansion method to solve nonlinear rational differential-difference equations.The procedure is demonstrated using two distinct equations.Our approach allows one to construct three types of exact traveling wave solutions(hyperbolic,trigonometric,and rational) by means of the simplified form of the auxiliary equation method with reduced parameters.Our analysis leads to analytic solutions in terms of topological solitons and singular periodic functions as well.
文摘In this paper, we give the expression of the least square solution of the linear quaternion matrix equation AXB = C subject to a consistent system of quaternion matrix equations D1X = F1, XE2 =F2, and derive the maximal and minimal ranks and the leastnorm of the above mentioned solution. The finding of this paper extends some known results in the literature.
基金Supported by the National Natural Science Foundation of China under Grant No.11171312
文摘Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.
基金partially supported by National Natural Science Foundation of ChinaProgram for Changjiang Scholars and Innovative Research Team in University(IRT1226)
文摘Since 1974, studying the original delay differential equation given by Kaplan and Yorke is about the problem on the existence of its periodic solutions, there have been a series of interesting and significant results in the previous literature. In this paper, we present a survey of some basic results. Some interesting open problems are also
文摘In this paper, we consider a modified Leslie-Clower predator prey model with Holling- type II schemes and mutual interference. By applying the comparison theorem of the differential equation and constructing a suitable Lyapunov function, sufficient conditions which guarantee the permanence and existence of a unique globally attractive positive almost periodic solution of the system are obtained. Our results not only supplement but also improve some existing ones.
文摘Considering the fact that the production and provision of some vaccines are ordered and governed by the government according to the history data of disease, a kind of SIR model with constant vaccination rate and impulsive state feedback control is presented. The dynamical properties of semi-continuous three-dimensional SIR system can be obtained by discussing the properties of the corresponding two-dimensional system in the limit set. The existence and uniqueness of order-1 periodic solution are discussed by using the successive function and the compression mapping theorem. A new theorem for the orbital stability of order-1 periodic solution is proved by geometric method. Finally, numerical simulations are given to verify the mathematical results and some conclusions are given. The results show that the disease can be controlled to a lower level by means of impulsive state feedback control strategy, but cannot be eradicated.