期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Neighborhood Rough Set Attribute Reduction Method Based on Attribute Importance
1
作者 Peiyu Su Feng Qin Fu Li 《American Journal of Computational Mathematics》 2023年第4期578-593,共16页
Attribute reduction is a hot topic in rough set research. As an extension of rough sets, neighborhood rough sets can effectively solve the problem of information loss after data discretization. However, traditional gr... Attribute reduction is a hot topic in rough set research. As an extension of rough sets, neighborhood rough sets can effectively solve the problem of information loss after data discretization. However, traditional greedy-based neighborhood rough set attribute reduction algorithms have a high computational complexity and long processing time. In this paper, a novel attribute reduction algorithm based on attribute importance is proposed. By using conditional information, the attribute reduction problem in neighborhood rough sets is discussed, and the importance of attributes is measured by conditional information gain. The algorithm iteratively removes the attribute with the lowest importance, thus achieving the goal of attribute reduction. Six groups of UCI datasets are selected, and the proposed algorithm SAR is compared with L<sub>2</sub>-ELM, LapTELM, CTSVM, and TBSVM classifiers. The results demonstrate that SAR can effectively improve the time consumption and accuracy issues in attribute reduction. 展开更多
关键词 Rough Sets Attribute Importance Attribute Reduction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部