期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Selection criteria of MPOB-Angola germplasm collection for yield improvement of the oil palm
1
作者 A.Norziha Z.Zamri +2 位作者 Y.Zulkifli A.M.Fadila M.Marhalil 《Oil Crop Science》 CSCD 2024年第1期20-28,共9页
Oil palm germplasm collected from Angola,Africa in 1991 were subjected to genetic variability potential studies.The collection was planted in the form of open-pollinated families as trials at the Malaysian Palm Oil Bo... Oil palm germplasm collected from Angola,Africa in 1991 were subjected to genetic variability potential studies.The collection was planted in the form of open-pollinated families as trials at the Malaysian Palm Oil Board(MPOB)Kluang Research Station,Johor,Malaysia,in 1994.Dura palms from 52 families and tenera palms from 44 families of MPOB-Angola were evaluated for their bunch yield and bunch quality components.The objectives of this study were to determine the genetic variability among the families and performance of MPOB-Angola germplasm for yield improvement.The analysis of variance(ANOVA)revealed highly significant differences between the dura and tenera families for most of the traits,suggesting the presence of high genetic variability,which is essential for breeding programmes.Among the duras,family AGO 02.02 displayed the best yield performance,with a high fresh fruit bunch,oil yield and total economic product at 240.40,29.46 and 37.93 kg palm^(-1)year^(-1),respectively.As for the teneras,family AGO 03.04 recorded the highest FFB yield and oil yield at 249.25 and 45.22 kg palm^(-1)year^(-1),respectively.Besides that,several families with big fruit sizes or producing a mean fruit weight of 14-17 g were also identified.Both dura and tenera from AGO 01.01 recorded the highest oil to bunch(O/B)of 17.76%and 28.65%,respectively.These findings will facilitate the selection of palms from the MPOB-Angola germplasm for future breeding programmes. 展开更多
关键词 Oil palm GERMPLASM Genetic variability HERITABILITY Yield improvement
下载PDF
An improved yield criterion characterizing the anisotropic and tension-compression asymmetric behavior of magnesium alloy 被引量:1
2
作者 Zhigang Li Haifeng Yang +1 位作者 Jianguang Liu Fu Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第2期612-628,共17页
A novel yield criterion based on CPB06 considering anisotropic and tension-compression asymmetric behaviors of magnesium alloys was derived and proposed(called M_CPB06).This yield criterion can simultaneously predict ... A novel yield criterion based on CPB06 considering anisotropic and tension-compression asymmetric behaviors of magnesium alloys was derived and proposed(called M_CPB06).This yield criterion can simultaneously predict the yield stresses and the Lankford ratios at different angles(if any)under uniaxial tension,compression,equal-biaxial and equal-compression conditions.Then,in order to further describe the anisotropic strain-hardening characteristics of magnesium alloy,the proposed M_CPB06 criterion was further evolved to the M_CPB06ev model by expressing the parameters of the M_CPB06 model as functions of the plastic strain.As the model was developed,the stresses and Lankford ratios of AZ31B and ZK61M magnesium alloys at different angles under tensile,compressive and through-thickness compressive conditions were used to calibrate the M_CPB06/M_CPB06ev and the existing CPB06ex2 model.Calibration results reveal that compared with the CPB06ex2 yield criterion with equal quantity of coefficients,the M_CPB06 criterion exhibits certain advancement,and meanwhile the M_CPB06ev model can relatively accurately predict the change of the yield locus with increase of the plastic strain.Finally,the M_CPB06ev model was developed through UMAT in LS-DYNA.Finite element simulations using the subroutine were conducted on the specimens of different angles to the rolling direction under tension and compression.Simulation results were highly consistent with the experimental results,demonstrating a good reliability and accuracy of the developed subroutine. 展开更多
关键词 Magnesium alloy ANISOTROPY Tension-compression asymmetry improved yield criterion UMAT
下载PDF
Improvements of Fiber Yield and Fiber Fineness by Expressing the iaaM Gene in Cotton Seed Coat 被引量:3
3
作者 PEI Yan,ZHENG Xue-lian,ZHANG Mi,ZENG Qi-wei,HOU Lei(Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture of China,Biotechnology Research Center,Southwest University,Chongqing 400716,P.R.China) 《棉花学报》 CSCD 北大核心 2008年第S1期44-,共1页
Cotton,the most important natural fiber crop in the world,is a mainstay in China's economy.However,for over two decades,cotton yields both in China and U.S.have been at a plateau.
关键词 FBP improvements of Fiber Yield and Fiber Fineness by Expressing the iaaM Gene in Cotton Seed Coat
下载PDF
Exploration of rice yield potential: Decoding agronomic and physiological traits 被引量:9
4
作者 Gengmi Li Jiuyou Tang +1 位作者 Jiakui Zheng Chengcai Chu 《The Crop Journal》 SCIE CSCD 2021年第3期577-589,共13页
Rice grain yield is determined by three major"visible"morphological traits:grain weight,grain number per panicle,and effective tiller number,which are affected by a series of"invisible"physiologica... Rice grain yield is determined by three major"visible"morphological traits:grain weight,grain number per panicle,and effective tiller number,which are affected by a series of"invisible"physiological factors including nutrient use efficiency and photosynthetic efficiency.In the past few decades,substantial progress has been made on elucidating the molecular mechanisms underlying grain yield formation,laying a solid foundation for improving rice yield by molecular breeding.This review outlines our current understanding of the three morphological yield-determining components and summarizes major progress in decoding physiological traits such as nutrient use efficiency and photosynthetic efficiency.It also discusses the integration of current knowledge about yield formation and crop improvement strategies including genome editing with conventional and molecular breeding. 展开更多
关键词 RICE Yield improvement Nitrogen use efficiency Photosynthetic efficiency Molecular breeding
下载PDF
HapIII of TaSAP1-A1, a Positively Selected Haplotype in Wheat Breeding 被引量:4
5
作者 CHANG Jian-zhong HAO Chen-yang +2 位作者 CHANG Xiao-ping ZHANG Xue-yong JING Rui-lian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第7期1462-1468,共7页
Stress-associated protein (SAP) has functions in maintaining plant cell elongation, embryo development and response to abiotic stresses. TaSAP1-A1, one of the Triticum aestivum SAP1 (TaSAP1) members located on whe... Stress-associated protein (SAP) has functions in maintaining plant cell elongation, embryo development and response to abiotic stresses. TaSAP1-A1, one of the Triticum aestivum SAP1 (TaSAP1) members located on wheat chromosome 7A was isolated for polymorphism analysis. HaplII of TaSAP1-A1 was found significantly associated with thousand-grain weight (TGW) in multiple environments. In this study, HaplII also made a positive contribution to TGW in Population 2. The distribution of TaSAP1-A1 HapIII was tracked among varieties released in different years and geographical environments of China. The frequency of HapIII showed an increasing trend during the breeding process in two different populations. The ItapIII was gradually selected and applied from 6.36% in landraces to 13.50% in modem varieties. These results exhibited that TaSAP1-A1 HapIII was positively selected during wheat breeding, which is beneficial for grain-yield improvement. The preferred HapIIl was initially selected and applied in the higher latitude areas of China in accord with the long day season and longer grain filling stage in these areas. Moreover, the frequency of HaplII in recent modem varieties was still quite low (19.29-26.67%). It indicated a high application potential of TaSAP1-A 1 HapIII for improving grain yield in wheat breeding. 展开更多
关键词 wheat (Triticum aestivum L.) TaSAP1-A1 HapIII frequency distribution thousand-grain weight grain yield improvement
下载PDF
Contribution of ear photosynthesis to grain yield under rainfed and irrigation conditions for winter wheat cultivars released in the past 30 years in North China Plain 被引量:23
6
作者 WANG Yun-qi XI Wen-xing +5 位作者 WANG Zhi-min WANG Bin XU Xue-xin HAN Mei-kun ZHOU Shun-li ZHANG Ying-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第10期2247-2256,共10页
To understand the contribution of ear photosynthesis to grain yield and its response to water supply in the improvement of winter wheat, 15 cultivars released from 1980 to 2012 in North China Plain(NCP) were planted... To understand the contribution of ear photosynthesis to grain yield and its response to water supply in the improvement of winter wheat, 15 cultivars released from 1980 to 2012 in North China Plain(NCP) were planted under rainfed and irrigated conditions from 2011 to 2013, and the ear photosynthesis was tested by ear shading. During the past 30 years, grain yield significantly increased, the flag leaf area slightly increased under irrigated condition but decreased significantly under rainfed condition, the ratio of grain weight:leaf area significantly increased, and the contribution of ear photosynthesis to grain yield changed from 33.6 to 64.5% and from 32.2 to 57.2% under rainfed and irrigated conditions, respectively. Grain yield, yield components, and ratio of grain weight:leaf area were positively related with contribution of ear photosynthesis. The increase in grain yield in winter wheat was related with improvement in ear photosynthesis contribution in NCP, especially under rainfed condition. 展开更多
关键词 wheat ear photosynthesis grain yield improvement of cultivars
下载PDF
Cowpea NAC1/NAC2 transcription factors improve growth and tolerance to drought and heat in transgenic cowpea through combined activation of photosynthetic and antioxidant mechanisms 被引量:5
7
作者 Richa Srivastava Yuriko Kobayashi +1 位作者 Hiroyuki Koyama Lingaraj Sahoo 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2023年第1期25-44,共20页
NAC(NAM/ATAF1/2/CUC2)transcription factors are central switches of growth and stress responses in plants.However,unpredictable interspecies conservation of function and regulatory targets makes the well-studied NAC or... NAC(NAM/ATAF1/2/CUC2)transcription factors are central switches of growth and stress responses in plants.However,unpredictable interspecies conservation of function and regulatory targets makes the well-studied NAC orthologs inapt for pulse engineering.The knowledge of suitable NAC candidates in hardy pulses like cowpea(Vigna unguiculata(L.)Walp.)is still in infancy,hence warrants immediate biotechnological intervention.Here,we showed that overexpression of two native NAC genes(VuNAC1and VuNAC2)promoted germinative,vegetative,and reproductive growth and conferred multiple abiotic stress tolerance in a commercial cowpea variety.The transgenic lines displayed increased leaf area,thicker stem,nodule-rich denser root system,early flowering,higher pod production(~3.2-fold and~2.1-fold),and greater seed weight(10.3%and 6.0%).In contrast,transient suppression of VuNAC1/2 caused severe growth retardation and flower inhibition.The overexpressor lines showed remarkable tolerance to major yielddeclining terminal stresses,such as drought,salinity,heat,and cold,and recovered growth and seed production by boosting photosynthetic activity,water use efficiency,membrane integrity,Na^(+)/K^(+)homeostasis,and antioxidant activity.The comparative transcriptome study indicated consolidated activation of genes involved in chloroplast development,photosynthetic complexes,cell division and expansion,cell wall biogenesis,nutrient uptake and metabolism,stress response,abscisic acid,and auxin signaling.Unlike their orthologs,VuNAC1/2 direct synergistic transcriptional tuning of stress and developmental signaling to avoid unwanted trade-offs.Their overexpression governs the favorable interplay of photosynthesis and reactive oxygen species regulation to improve stress recovery,nutritional sufficiency,biomass,and production.This unconventional balance of strong stress tolerance and agronomic quality is useful for translational crop research and molecular breeding of pulses. 展开更多
关键词 COWPEA enhanced photosynthetic activity improved growth improved yield legume genetic engineering multiple stress tolerance NAC transcription factor VuNAC
原文传递
Application of Aisi Si/TE Compound Bacterial Fertilizer in Rice
8
作者 Yujie TANG Hui WANG +1 位作者 Haitao LIU Demin QU 《Asian Agricultural Research》 2022年第3期33-35,50,共4页
[Objectives]To investigate the application effect of compound microbial fertilizer on crops.[Methods]Livestock and poultry breeding waste,rapeseed cake and peanut straw were fully decomposed,and then added with compou... [Objectives]To investigate the application effect of compound microbial fertilizer on crops.[Methods]Livestock and poultry breeding waste,rapeseed cake and peanut straw were fully decomposed,and then added with compound functional microbial inoculum to produce Aisi Si/TE(active chelated silicon/trace element)compound microbial fertilizer,which was used to conduct 10%nitrogen reduction alternative fertilization experiment on rice.[Results]The yield of rice applied with 225 kg/ha Aisi Si/TE compound bacterial fertilizer was 7203 kg/ha,increased by 5.4%,6.9%and 46.9%,respectively compared to those of rice applied with 225 kg/ha inactivated Aisi Si/TE compound microbial fertilizer,conventional fertilization and blank control(P<0.01).Application of Aisi Si/TE compound microbial fertilizer to rice improved soil organic matter and effective nutrient content and showed obvious effect of saving nitrogen and increasing yield and income.In addition,it provided a good micro-ecological environment,passivated and solidified heavy metals,effectively reduced the biological mobility of heavy metals,and greatly reduced the cadmium content in rice.[Conclusions]Application of Aisi Si/TE compound microbial fertilizer is beneficial to improving the quality of agricultural products. 展开更多
关键词 Compound microbial fertilizer RICE Reduced nitrogen fertilization Yield and efficiency improvement Heavy metal passivation
下载PDF
Engineering Improved Photosynthesis in the Era of Synthetic Biology 被引量:3
9
作者 Willian Batista-Silva Paula da Fonseca-Pereira +3 位作者 Auxiliadora Oliveira Martins Agustin Zsogon Adriano Nunes-Nesi Wagner L.Araujo 《Plant Communications》 2020年第2期1-17,共17页
Much attention has been given to the enhancement of photosynthesis as a strategy for the optimization of crop productivity.As traditional plant breeding is most likely reaching a plateau,there is a timely need to acce... Much attention has been given to the enhancement of photosynthesis as a strategy for the optimization of crop productivity.As traditional plant breeding is most likely reaching a plateau,there is a timely need to accelerate improvements in photosynthetic efficiency by means of novel tools and biotechnological solutions.The emerging field of synthetic biology offers the potential for building completely novel pathways in predictable directions and,thus,addresses the global requirements for higher yields expected to occur in the 21st century.Here,we discuss recent advances and current challenges of engineering improved photosynthesis in the era of synthetic biology toward optimized utilization of solar energy and carbon sources to optimize the production of food,fiber,and fuel. 展开更多
关键词 PHOTOSYNTHESIS synthetic biology genetic engineering yield improvement targeted manipulation
原文传递
Systems model-guided rice yield improvements based on genes controlling source, sink, and flow 被引量:5
10
作者 Pan Li Tiangen Chang +7 位作者 Shuoqi Chang Xiang Ouyang Mingnan Qu Qingfeng Song Langtao Xiao Shitou Xia Qiyun Deng Xin-Guang Zhu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2018年第12期1154-1180,共27页
A large number of genes related to source, sink,and flow have been identified after decades of research in plant genetics. Unfortunately, these genes have not been effectively utilized in modern crop breeding. This pe... A large number of genes related to source, sink,and flow have been identified after decades of research in plant genetics. Unfortunately, these genes have not been effectively utilized in modern crop breeding. This perspective paper aims to examine the reasons behind such a phenomenon and propose a strategy to resolve this situation. Specifically, we first systematically survey the currently cloned genes related to source, sink, and flow;then we discuss three factors hindering effective application of these identified genes, which include the lack of effective methods to identify limiting or critical steps in a signaling network, the misplacement of emphasis on properties, at the leaf, instead of the whole canopy level,and the non-linear complex interaction between source,sink, and flow. Finally, we propose the development of systems models of source, sink and flow, together with a detailed simulation of interactions between them and their surrounding environments, to guide effective use of the identified elements in modern rice breeding. These systems models will contribute directly to the definition of crop ideotype and also identification of critical features and parameters that limit the yield potential in current cultivars. 展开更多
关键词 Systems model-guided rice yield improvements based on genes controlling source
原文传递
Ectopic expression of fungal EcGDH improves nitrogen assimilation and grain yield in rice 被引量:4
11
作者 Dongying Tang Yuchong Peng +9 位作者 Jianzhong Lin Changqing Du Yuanzhu Yang Dan Wang Cong Liu Lu Yan Xiaoying Zhao Xia Li Liangbi Chen Xuanming Liu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2018年第2期85-88,共4页
NADP(H)-dependent glutamate dehydrogenases(GDH) in lower organisms have stronger ammonium affinity than those in higher plants. Here we report that transgenic rice overexpressing the EcGDH from Eurotium cheralieri... NADP(H)-dependent glutamate dehydrogenases(GDH) in lower organisms have stronger ammonium affinity than those in higher plants. Here we report that transgenic rice overexpressing the EcGDH from Eurotium cheralieri exhibited significantly enhanced aminating activities. Hydroponic and field tests showed that nitrogen assimilation efficiency and grain yields were markedly increased in these transgenic plants, especially at the low nitrogen conditions.These results suggest that EcGDH may have potential to be used to improve nitrogen assimilation and grain yield in rice. 展开更多
关键词 GDH Ectopic expression of fungal EcGDH improves nitrogen assimilation and grain yield in rice
原文传递
Development of a combined approach for improvement and optimization of karanja biodiesel using response surface methodology and genetic algorithm
12
作者 Sunil DHINGRA Gian BHUSHAN Kashyap Kumar DUBEY 《Frontiers in Energy》 SCIE CSCD 2013年第4期495-505,共11页
This paper described the production of karanja biodiesel using response surface methodology (RSM) and genetic algorithm (GA). The optimum combination of reaction variables were analyzed for maximizing the biodiese... This paper described the production of karanja biodiesel using response surface methodology (RSM) and genetic algorithm (GA). The optimum combination of reaction variables were analyzed for maximizing the biodiesel yield. The yield obtained by the RSM was 65% whereas the predicted value was 70%. The mathematical regression model proposed from the RSM was coupled with the GA. By using this technique, 90% of the yield was obtained at a molar ratio of 38, a reaction time of 8 hours, a reaction temperature of 40 ℃, a catalyst concentration of 2% oil, and a mixing speed of 707 r/min. The yield produced was closer to the predicted value of 94.2093%. Hence, 25% of the improvement in the biodiesel yield was reported. Moreover the different properties of karanja biodiesel were found closer to the American Society for Testing & Materials (ASTM) standard of biodiesel. 展开更多
关键词 optimization of karanja biodiesel genetic algorithm (GA) response surface methodology (RSM) percentage improvement in the biodiesel yield properties of biodiesel
原文传递
The rational design of multiple molecular module-based assemblies for simultaneously improving rice yield and grain quality 被引量:5
13
作者 Kun Wu Xiaopeng Xu +5 位作者 Nan Zhong Haixiang Huang Jianping Yu Yafeng Ye Yuejin Wu Xiangdong Fu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2018年第6期337-341,共5页
Rice is one of the most important staple food for over half of the world's population,and a substantial increase in productivity and quality of rice grain will be required to feed a growing human population.Grain siz... Rice is one of the most important staple food for over half of the world's population,and a substantial increase in productivity and quality of rice grain will be required to feed a growing human population.Grain size and shape are the two important components contributing to grain yield and quality,because they impact both yield potential and end-use quality. 展开更多
关键词 The rational design of multiple molecular module-based assemblies for simultaneously improving rice yield and grain quality RIL length NIP
原文传递
Molecular and genetic pathways for optimizing spikelet development and grain yield 被引量:3
14
作者 Zheng Yuan Staffan Persson Dabing Zhang 《aBIOTECH》 2020年第4期276-292,共17页
The spikelet is a unique structure of inflorescence in grasses that generates one to many flowers depending on its determinate or indeterminate meristem activity.The growth patterns and number of spikelets,furthermore... The spikelet is a unique structure of inflorescence in grasses that generates one to many flowers depending on its determinate or indeterminate meristem activity.The growth patterns and number of spikelets,furthermore,define inflorescence architecture and yield.Therefore,understanding the molecular mechanisms underlying spikelet development and evolution are attractive to both biologists and breeders.Based on the progress in rice and maize,along with increasing numbers of genetic mutants and genome sequences from other grass families,the regulatory networks underpinning spikelet development are becoming clearer.This is particularly evident for domesticated traits in agriculture.This review focuses on recent progress on spikelet initiation,and spikelet and floret fertility,by comparing results from Arabidopsis with that of rice,sorghum,maize,barley,wheat,Brachypodium distachyon,and Setaria viridis.This progress may benefit genetic engineering and molecular breeding to enhance grain yield. 展开更多
关键词 Yield improvement INFLORESCENCE SPIKELET FERTILITY BREEDING
原文传递
A simple and effective method to achieve the successful start-up of a current reference
15
作者 韩蕾 王玉军 +2 位作者 张小兴 戴宇杰 吕英杰 《Journal of Semiconductors》 EI CAS CSCD 2012年第8期123-126,共4页
Start-up design is a critical issue in current reference as it is very closely related to production yield. However, its function is difficult to predict using normal transaction simulations before the device is put i... Start-up design is a critical issue in current reference as it is very closely related to production yield. However, its function is difficult to predict using normal transaction simulations before the device is put into diffusion. In this paper, we discuss a simple and effective simulation approach which ensures a successful start-up process in a self-biased temperature independent current reference. The circuit is implemented in a class-D power amplifier with a 0.35 #m BiCMOS process and the experimental result validates that, by using this method, the start-up success rate can be greatly improved to 100%. 展开更多
关键词 temperature independent current reference bi-stable circuit start-up process simulation method yield improvement
原文传递
One-pot synthesis of nuclear targeting carbon dots with high photoluminescence
16
作者 Pengchong Wang Hongrui Ji +5 位作者 Shiyan Guo Ying Zhang Yan Yan Ke Wang Jianfeng Xing Yalin Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第12期3911-3915,共5页
Carbon dots(CDs) are novel fluorescent nanomaterials with good water solubility, high resistance to photobleaching and low toxicity. While, there are few studies elaborate on the relationship among reaction conditions... Carbon dots(CDs) are novel fluorescent nanomaterials with good water solubility, high resistance to photobleaching and low toxicity. While, there are few studies elaborate on the relationship among reaction conditions, properties and applications of CDs. In this study, a series of CDs are synthesized through a one-pot hydrothermal method, and different reaction conditions are carried out to study the influencing factors of CDs properties. As a result, with the increase of temperature and reaction time, the particle size and zeta potential of CDs increased, the maximum emission wavelength red-shifted and the fluorescence quantum yield(QY) improved. Among them, CD3006 has good water solubility and highest QY of 81.4%, which is beneficial for its applications in bioimaging and ion detection. CD3006 is almost nontoxic in cells at a concentration of 500 μg/m L. In addition, the positive charged CD3006 shows nuclear targeting potential because of its combination with DNA through electrostatic interaction in nucleus. The properties of CDs can be greatly enhanced by controlling reaction conditions, and it provides great application prospects. 展开更多
关键词 Optimization of synthesis process Fluorescence quantum yield improving Nuclear targeting BIOIMAGING Ferric ion detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部