Our purpose of this paper is to apply the improved Kudryashov method for solving various types of nonlinear fractional partial differential equations. As an application, the time-space fractional Korteweg-de Vries-Bur...Our purpose of this paper is to apply the improved Kudryashov method for solving various types of nonlinear fractional partial differential equations. As an application, the time-space fractional Korteweg-de Vries-Burger (KdV-Burger) equation is solved using this method and we get some new travelling wave solutions. To acquire our purpose a complex transformation has been also used to reduce nonlinear fractional partial differential equations to nonlinear ordinary differential equations of integer order, in the sense of the Jumarie’s modified Riemann-Liouville derivative. Afterwards, the improved Kudryashov method is implemented and we get our required reliable solutions where the results are justified by mathematical software Maple-13.展开更多
An inexact Halley's method-Halley-PCG(preconditioned conjugate gradient) method is proposed for solving the systems of linear equations for improved Halley method either by Cholesky factorization exactly or by prec...An inexact Halley's method-Halley-PCG(preconditioned conjugate gradient) method is proposed for solving the systems of linear equations for improved Halley method either by Cholesky factorization exactly or by preconditioned conjugate gradient method approximately. The convergence result is given and the efficiency of the method compared to the improved Halley's method is shown.展开更多
To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltai...To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources,has been carried out.This has been done using a new meta-heuristic algorithm,improved artificial rabbits optimization(IARO).In this study,the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method(TPEM).The IARO algorithm is applied to calculate the best capacity of hub energy equipment,such as solar and wind renewable energy sources,combined heat and power(CHP)systems,steamboilers,energy storage,and electric cars in the day-aheadmarket.The standard ARO algorithmis developed to mimic the foraging behavior of rabbits,and in this work,the algorithm’s effectiveness in avoiding premature convergence is improved by using the dystudynamic inertia weight technique.The proposed IARO-based scheduling framework’s performance is evaluated against that of traditional ARO,particle swarm optimization(PSO),and salp swarm algorithm(SSA).The findings show that,in comparison to previous approaches,the suggested meta-heuristic scheduling framework based on the IARO has increased energy profit in day-ahead electricity,gas,and heating markets by satisfying the operational and energy hub limitations.Additionally,the results show that TPEM approach dependability consideration decreased hub energy’s profit by 8.995%as compared to deterministic planning.展开更多
In this paper we give an almost sharp error estimate of Halley’s iteration for the majorizing sequence. Compared with the corresponding results in [6,14], it is far better. Meanwhile,the convergence theorem is establ...In this paper we give an almost sharp error estimate of Halley’s iteration for the majorizing sequence. Compared with the corresponding results in [6,14], it is far better. Meanwhile,the convergence theorem is established .for Halley’s iteration in Banach spaces.展开更多
The purpose of this paper is that we give an extension of Halley’s method (Section 2), and the formulas to compare the convergences of the Halley’s method and extended one (Section 3). For extension of Halley’s met...The purpose of this paper is that we give an extension of Halley’s method (Section 2), and the formulas to compare the convergences of the Halley’s method and extended one (Section 3). For extension of Halley’s method we give definition of function by variable transformation in Section 1. In Section 4 we do the numerical calculations of Halley’s method and extended one for elementary functions, compare these convergences, and confirm the theory. Under certain conditions we can confirm that the extended Halley’s method has better convergence or better approximation than Halley’s method.展开更多
文摘Our purpose of this paper is to apply the improved Kudryashov method for solving various types of nonlinear fractional partial differential equations. As an application, the time-space fractional Korteweg-de Vries-Burger (KdV-Burger) equation is solved using this method and we get some new travelling wave solutions. To acquire our purpose a complex transformation has been also used to reduce nonlinear fractional partial differential equations to nonlinear ordinary differential equations of integer order, in the sense of the Jumarie’s modified Riemann-Liouville derivative. Afterwards, the improved Kudryashov method is implemented and we get our required reliable solutions where the results are justified by mathematical software Maple-13.
文摘An inexact Halley's method-Halley-PCG(preconditioned conjugate gradient) method is proposed for solving the systems of linear equations for improved Halley method either by Cholesky factorization exactly or by preconditioned conjugate gradient method approximately. The convergence result is given and the efficiency of the method compared to the improved Halley's method is shown.
基金This research is supported by the Deputyship forResearch&Innovation,Ministry of Education in Saudi Arabia under Project Number(IFP-2022-35).
文摘To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources,has been carried out.This has been done using a new meta-heuristic algorithm,improved artificial rabbits optimization(IARO).In this study,the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method(TPEM).The IARO algorithm is applied to calculate the best capacity of hub energy equipment,such as solar and wind renewable energy sources,combined heat and power(CHP)systems,steamboilers,energy storage,and electric cars in the day-aheadmarket.The standard ARO algorithmis developed to mimic the foraging behavior of rabbits,and in this work,the algorithm’s effectiveness in avoiding premature convergence is improved by using the dystudynamic inertia weight technique.The proposed IARO-based scheduling framework’s performance is evaluated against that of traditional ARO,particle swarm optimization(PSO),and salp swarm algorithm(SSA).The findings show that,in comparison to previous approaches,the suggested meta-heuristic scheduling framework based on the IARO has increased energy profit in day-ahead electricity,gas,and heating markets by satisfying the operational and energy hub limitations.Additionally,the results show that TPEM approach dependability consideration decreased hub energy’s profit by 8.995%as compared to deterministic planning.
基金Jointly supported by China Major Key Project for Basic Researcher and Provincial Natrual Science Foundation.
文摘In this paper we give an almost sharp error estimate of Halley’s iteration for the majorizing sequence. Compared with the corresponding results in [6,14], it is far better. Meanwhile,the convergence theorem is established .for Halley’s iteration in Banach spaces.
文摘The purpose of this paper is that we give an extension of Halley’s method (Section 2), and the formulas to compare the convergences of the Halley’s method and extended one (Section 3). For extension of Halley’s method we give definition of function by variable transformation in Section 1. In Section 4 we do the numerical calculations of Halley’s method and extended one for elementary functions, compare these convergences, and confirm the theory. Under certain conditions we can confirm that the extended Halley’s method has better convergence or better approximation than Halley’s method.
基金Supported by the National Natural Science Foundation of China(1140104611301036)+1 种基金the Scientific Research Foundation of the Education Department of Jilin Province(JJKH20170536KJJJKH20170537KJ)