This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) t...This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) texture features and local features are extracted by extracting,reversing,dilating and enhancing the green components of retinal images to construct a 17-dimensional feature vector. A dataset is constructed by using the feature vector and the data manually marked by the experts. The feature is used to generate CART binary tree for nodes,where CART binary tree is as the AdaBoost weak classifier,and AdaBoost is improved by adding some re-judgment functions to form a strong classifier. The proposed algorithm is simulated on the digital retinal images for vessel extraction (DRIVE). The experimental results show that the proposed algorithm has higher segmentation accuracy for blood vessels,and the result basically contains complete blood vessel details. Moreover,the segmented blood vessel tree has good connectivity,which basically reflects the distribution trend of blood vessels. Compared with the traditional AdaBoost classification algorithm and the support vector machine (SVM) based classification algorithm,the proposed algorithm has higher average accuracy and reliability index,which is similar to the segmentation results of the state-of-the-art segmentation algorithm.展开更多
针对带钢表面缺陷识别率受到光照变化、纹理复杂多样以及噪声干扰而导致误识别率高的问题,提出一种新的带钢表面缺陷识别算法。首先从增加邻域联系的角度改进多块局部二值模式(MB-LBP)特征,缓解提取过程中因所选子窗口尺寸大小不同而造...针对带钢表面缺陷识别率受到光照变化、纹理复杂多样以及噪声干扰而导致误识别率高的问题,提出一种新的带钢表面缺陷识别算法。首先从增加邻域联系的角度改进多块局部二值模式(MB-LBP)特征,缓解提取过程中因所选子窗口尺寸大小不同而造成的保留图像细节与去除噪声之间的平衡性问题;其次将改进的MB-LBP特征与梯度方向直方图(HOG)特征线性加权得到融合特征,弥补MB-LBP特征没有表征缺陷边缘和方向的缺点,从而更全面地表征复杂的缺陷纹理;最后通过同时增加全局信息和监督信息改善的局部保持投影(LPP)算法将高维的融合特征非线性映射到低维的本质特征空间中,减少融合特征冗余对分类器识别率的影响。在NEU数据集上仿真实验结果表明:算法对光照变化、纹理复杂多样、以及噪声具有一定的鲁棒性,在信噪比为50 d B情况下将带钢表面缺陷识别准确率提高了5. 17%。展开更多
The information of expression texture extracted by the completed local ternary patterns(CLTP) method is not accurate enough, which may cause low recognition rate. Therefore, an improved completed local ternary pattern...The information of expression texture extracted by the completed local ternary patterns(CLTP) method is not accurate enough, which may cause low recognition rate. Therefore, an improved completed local ternary patterns(ICLTP) is proposed here. Firstly, the Scharr operator is used to calculate gradient magnitudes of images to enhance the detail of texture, which is beneficial to obtaining more accurate expression features. Secondly, two different neighborhoods of CLTP features are combined to obtain much information of facial expression. Finally, K nearest neighbor(KNN) and sparse representation classifier(SRC) are combined for classification and a 10-fold cross-validation method is tested in the JAFFE and CK+ databases. The results show that the ICLTP method can improve the recognition rate of facial expression and reduce the confusion between various expressions. Especially, the misrecognition rate of other six expressions recognized as neutral is reduced in the 7-class expression recognition.展开更多
基金National Natural Science Foundation of China(No.61163010)
文摘This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) texture features and local features are extracted by extracting,reversing,dilating and enhancing the green components of retinal images to construct a 17-dimensional feature vector. A dataset is constructed by using the feature vector and the data manually marked by the experts. The feature is used to generate CART binary tree for nodes,where CART binary tree is as the AdaBoost weak classifier,and AdaBoost is improved by adding some re-judgment functions to form a strong classifier. The proposed algorithm is simulated on the digital retinal images for vessel extraction (DRIVE). The experimental results show that the proposed algorithm has higher segmentation accuracy for blood vessels,and the result basically contains complete blood vessel details. Moreover,the segmented blood vessel tree has good connectivity,which basically reflects the distribution trend of blood vessels. Compared with the traditional AdaBoost classification algorithm and the support vector machine (SVM) based classification algorithm,the proposed algorithm has higher average accuracy and reliability index,which is similar to the segmentation results of the state-of-the-art segmentation algorithm.
文摘针对带钢表面缺陷识别率受到光照变化、纹理复杂多样以及噪声干扰而导致误识别率高的问题,提出一种新的带钢表面缺陷识别算法。首先从增加邻域联系的角度改进多块局部二值模式(MB-LBP)特征,缓解提取过程中因所选子窗口尺寸大小不同而造成的保留图像细节与去除噪声之间的平衡性问题;其次将改进的MB-LBP特征与梯度方向直方图(HOG)特征线性加权得到融合特征,弥补MB-LBP特征没有表征缺陷边缘和方向的缺点,从而更全面地表征复杂的缺陷纹理;最后通过同时增加全局信息和监督信息改善的局部保持投影(LPP)算法将高维的融合特征非线性映射到低维的本质特征空间中,减少融合特征冗余对分类器识别率的影响。在NEU数据集上仿真实验结果表明:算法对光照变化、纹理复杂多样、以及噪声具有一定的鲁棒性,在信噪比为50 d B情况下将带钢表面缺陷识别准确率提高了5. 17%。
基金supported by the National Natural Science Foundation of China(No.51604056)the Chongqing Science and Technology Commission(No.cstc2015jcyjBX0066)
文摘The information of expression texture extracted by the completed local ternary patterns(CLTP) method is not accurate enough, which may cause low recognition rate. Therefore, an improved completed local ternary patterns(ICLTP) is proposed here. Firstly, the Scharr operator is used to calculate gradient magnitudes of images to enhance the detail of texture, which is beneficial to obtaining more accurate expression features. Secondly, two different neighborhoods of CLTP features are combined to obtain much information of facial expression. Finally, K nearest neighbor(KNN) and sparse representation classifier(SRC) are combined for classification and a 10-fold cross-validation method is tested in the JAFFE and CK+ databases. The results show that the ICLTP method can improve the recognition rate of facial expression and reduce the confusion between various expressions. Especially, the misrecognition rate of other six expressions recognized as neutral is reduced in the 7-class expression recognition.