In this paper, some conclusions related to the prime number theorem, such as the Mertens formula are improved by the improved Abelian summation formula, and some problems such as “Dirichlet” function and “W(n)” fu...In this paper, some conclusions related to the prime number theorem, such as the Mertens formula are improved by the improved Abelian summation formula, and some problems such as “Dirichlet” function and “W(n)” function are studied.展开更多
A recursive method based on successive computations of perimeters of inscribed regular polygons for estimating π is formulated by employing the Pythagorean theorem alone without resorting to any trigonometric calcula...A recursive method based on successive computations of perimeters of inscribed regular polygons for estimating π is formulated by employing the Pythagorean theorem alone without resorting to any trigonometric calculations. The approach is classical but the formulation of coupled recursion relations is new. Further, use of infinite series for computing π is explored by an improved version of Leibniz’s series expansion. Finally, some remarks with reference to π are made on a relatively recently rediscovered Sumerian tablet depicting geometric figures.展开更多
文摘In this paper, some conclusions related to the prime number theorem, such as the Mertens formula are improved by the improved Abelian summation formula, and some problems such as “Dirichlet” function and “W(n)” function are studied.
文摘A recursive method based on successive computations of perimeters of inscribed regular polygons for estimating π is formulated by employing the Pythagorean theorem alone without resorting to any trigonometric calculations. The approach is classical but the formulation of coupled recursion relations is new. Further, use of infinite series for computing π is explored by an improved version of Leibniz’s series expansion. Finally, some remarks with reference to π are made on a relatively recently rediscovered Sumerian tablet depicting geometric figures.