期刊文献+
共找到643篇文章
< 1 2 33 >
每页显示 20 50 100
Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm
1
作者 Zhuo Chen Ningning Wang +1 位作者 Wenbo Jin Dui Li 《Energy Engineering》 EI 2024年第4期1007-1026,共20页
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi... A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy. 展开更多
关键词 Waxy crude oil wax deposition rate chaotic map improved reptile search algorithm Elman neural network prediction accuracy
下载PDF
Object Recognition Algorithm Based on an Improved Convolutional Neural Network
2
作者 Zheyi Fan Yu Song Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期139-145,共7页
In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted... In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition. 展开更多
关键词 object recognition selective search algorithm improved convolutional neural network(CNN)
下载PDF
Coal mine safety production forewarning based on improved BP neural network 被引量:38
3
作者 Wang Ying Lu Cuijie Zuo Cuiping 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期319-324,共6页
Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method... Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production. 展开更多
关键词 improved PSO algorithm BP neural network Coal mine safety production Early warning
下载PDF
Research on BP Neural Network Algorithm Based on Quasi- Newton Method 被引量:3
4
作者 Lu Peixin 《International Journal of Technology Management》 2014年第7期71-74,共4页
With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After f... With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After fully analyzing the features of quasi- Newton methods, the paper improves BP neural network algorithm. And the adjustment is made for the problems in the improvement process. The paper makes empirical analysis and proves the effectiveness of BP neural network algorithm based on quasi-Newton method. The improved algorithms are compared with the traditional BP algorithm, which indicates that the imoroved BP algorithm is better. 展开更多
关键词 Newton method BP neural network improved algorithm
下载PDF
Multi-Source Underwater DOA Estimation Using PSO-BP Neural Network Based on High-Order Cumulant Optimization
5
作者 Haihua Chen Jingyao Zhang +3 位作者 Bin Jiang Xuerong Cui Rongrong Zhou Yucheng Zhang 《China Communications》 SCIE CSCD 2023年第12期212-229,共18页
Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be ma... Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm. 展开更多
关键词 gaussian colored noise higher-order cumulant multiple sources particle swarm optimization(PSO)algorithm pso-bp neural network
下载PDF
A new PQ disturbances identification method based on combining neural network with least square weighted fusion algorithm
6
作者 吕干云 程浩忠 翟海保 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第6期649-653,共5页
A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances... A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances are distilled through an improved phase-located loop (PLL) system at first, and then five child BP ANNs with different structures are trained and adopted to identify the PQ disturbances respectively. The combining neural network fuses the identification results of these child ANNs with LS weighted fusion algorithm, and identifies PQ disturbances with the fused result finally. Compared with a single neural network, the combining one with LS weighted fusion algorithm can identify the PQ disturbances correctly when noise is strong. However, a single neural network may fail in this case. Furthermore, the combining neural network is more reliable than a single neural network. The simulation results prove the conclusions above. 展开更多
关键词 PQ disturbances identification combining neural network LS weighted fusion algorithm improved PLL system
下载PDF
Fault Attribute Reduction of Oil Immersed Transformer Based on Improved Imperialist Competitive Algorithm
7
作者 Li Bian Hui He +1 位作者 Hongna Sun Wenjing Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第6期83-90,共8页
The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to ... The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to the rise of the diagnosis error rate.Therefore,in order to obtain high quality oil immersed transformer fault attribute data sets,an improved imperialist competitive algorithm was proposed to optimize the rough set to discretize the original fault data set and the attribute reduction.The feasibility of the proposed algorithm was verified by experiments and compared with other intelligent algorithms.Results show that the algorithm was stable at the 27th iteration with a reduction rate of 56.25%and a reduction accuracy of 98%.By using BP neural network to classify the reduction results,the accuracy was 86.25%,and the overall effect was better than those of the original data and other algorithms.Hence,the proposed method is effective for fault attribute reduction of oil immersed transformer. 展开更多
关键词 transformer fault improved imperialist competitive algorithm rough set attribute reduction BP neural network
下载PDF
基于改进 PSO-BPNN 的拖拉机液压油品质监测
8
作者 李仲兴 朱方喜 +1 位作者 刘炳晨 郗少华 《中国农机化学报》 北大核心 2024年第10期140-146,共7页
为实现对拖拉机液压油品质的有效监测,保障拖拉机液压系统的平稳运行,基于改进PSO-BPNN设计一种针对拖拉机液压油品质的监测方法。首先,为研究拖拉机液压油品质恶化情况,在液压油新油的基础上配制不同比例的液压油油样。随后,搭建拖拉... 为实现对拖拉机液压油品质的有效监测,保障拖拉机液压系统的平稳运行,基于改进PSO-BPNN设计一种针对拖拉机液压油品质的监测方法。首先,为研究拖拉机液压油品质恶化情况,在液压油新油的基础上配制不同比例的液压油油样。随后,搭建拖拉机液压油品质监测试验装置,并依据试验装置采集与监测液压油粘度、介电常数和温度参数。然后,设计并搭建一种基于改进PSO-BPNN的拖拉机液压油品质监测模型,该模型利用正弦调整惯性权重的PSO算法优化BPNN的权值和阈值初始值,提高模型收敛效率。最后,为验证基于改进PSO-BPNN的液压油品质监测方法的可行性,与基于传统BPNN、标准PSO-BPNN的拖拉机液压油品质监测模型进行对比。结果表明,基于改进PSO-BPNN的拖拉机液压油品质监测方法具有较快的收敛速度,监测正确率达到97.78%,为优化拖拉机液压油品质监测方法提供参考。 展开更多
关键词 拖拉机 液压油品质 改进PSO算法 BP神经网络
下载PDF
基于IPSO-BP的船舶航迹预测研究
9
作者 白响恩 陈诺 徐笑锋 《包装工程》 CAS 北大核心 2024年第9期201-209,共9页
目的面对复杂的海上交通及密集的物流交通流,及时有效地对船舶航迹进行跟踪预测显得尤为重要,针对传统船舶航迹预测方法精确度低且效率低下的问题,提出一种改进方法。方法在船舶自动识别系统(Automatic Identification System,AIS)数据... 目的面对复杂的海上交通及密集的物流交通流,及时有效地对船舶航迹进行跟踪预测显得尤为重要,针对传统船舶航迹预测方法精确度低且效率低下的问题,提出一种改进方法。方法在船舶自动识别系统(Automatic Identification System,AIS)数据的基础上,建立改进粒子群算法(IPSO)与BP神经网络相结合的船舶轨迹预测模型,利用船舶历史航行轨迹数据,实现对未来船舶运动的预测。选取宁波舟山港的船舶历史轨迹数据进行实验,并将IPSO-BP模型的实验结果与其他模型进行比较。结果不同模型航迹预测对比结果表明,IPSO-BP模型的性能较好,其预测精度较高,适用于船舶轨迹预测。结论使用IPSO-BP模型能够更加精准地预测船舶航迹,在船舶危险预警、船舶异常监测等方面具有重要的指导作用。 展开更多
关键词 AIS数据 航迹预测 改进粒子群算法 BP神经网络
下载PDF
Modeling of Energy Consumption and Effluent Quality Using Density Peaks-based Adaptive Fuzzy Neural Network 被引量:10
10
作者 Junfei Qiao Hongbiao Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第5期968-976,共9页
Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a... Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods. 展开更多
关键词 Density peaks clustering effluent quality (EQ) energy consumption (EC) fuzzy neural network improved Levenberg-Marquardt algorithm wastewater treatment process (WWTP).
下载PDF
Proton exchange membrane fuel cells modeling based on artificial neural networks 被引量:4
11
作者 YudongTian XinjianZhu GuangyiCao 《Journal of University of Science and Technology Beijing》 CSCD 2005年第1期72-77,共6页
To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are anal... To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control. 展开更多
关键词 fuel cells proton exchange membrane artificial neural networks improved BP algorithm MODELING
下载PDF
A Novel Forgery Detection in Image Frames of the Videos Using Enhanced Convolutional Neural Network in Face Images 被引量:2
12
作者 S.Velliangiri J.Premalatha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期625-645,共21页
Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kin... Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kinds of researches on forensic detection have been presented,and it provides less accuracy.This paper proposed a novel forgery detection technique in image frames of the videos using enhanced Convolutional Neural Network(CNN).In the initial stage,the input video is taken as of the dataset and then converts the videos into image frames.Next,perform pre-sampling using the Adaptive Rood Pattern Search(ARPS)algorithm intended for reducing the useless frames.In the next stage,perform preprocessing for enhancing the image frames.Then,face detection is done as of the image utilizing the Viola-Jones algorithm.Finally,the improved Crow Search Algorithm(ICSA)has been used to select the extorted features and inputted to the Enhanced Convolutional Neural Network(ECNN)classifier for detecting the forged image frames.The experimental outcome of the proposed system has achieved 97.21%accuracy compared to other existing methods. 展开更多
关键词 Adaptive Rood Pattern Search(ARPS) improved Crow Search algorithm(ICSA) Enhanced Convolutional neural network(ECNN) Viola Jones algorithm Speeded Up Robust Feature(SURF)
下载PDF
基于动态惯性权重的电子节气门改进PSO-BP优化控制
13
作者 孙建民 杨世虎 +1 位作者 赵磊 姚德臣 《现代制造工程》 CSCD 北大核心 2024年第2期45-52,共8页
针对汽车电子节气门系统存在的动态迟滞非线性问题,提出一种模糊神经网络PID控制器的设计方法。该控制器将动态调整惯性权重的粒子群优化算法和BP算法结合来优化模糊神经网络参数,修正模糊神经网络在寻优过程中收敛缓慢、易陷入局部最... 针对汽车电子节气门系统存在的动态迟滞非线性问题,提出一种模糊神经网络PID控制器的设计方法。该控制器将动态调整惯性权重的粒子群优化算法和BP算法结合来优化模糊神经网络参数,修正模糊神经网络在寻优过程中收敛缓慢、易陷入局部最小值的不足。利用模糊神经网络的自学习能力,对PID控制器参数进行整定。仿真结果表明,经过优化后的模糊神经网络PID控制器相比于模糊PID控制器在响应时间、超调量和振荡次数等方面都有显着提升。在模拟气流扰动工况施加扰动信号后,该控制器表现出良好的抗干扰性能。在电子节气门响应试验中,节气门响应曲线存在轻微超调,但稳态误差较小,表明该控制方法下电子节气门具有良好的动态响应特性。 展开更多
关键词 动态惯性权重 电子节气门 迟滞非线性 改进粒子群优化算法 模糊神经网络
下载PDF
Short-term Load Prediction of Integrated Energy System with Wavelet Neural Network Model Based on Improved Particle Swarm Optimization and Chaos Optimization Algorithm 被引量:16
14
作者 Leijiao Ge Yuanliang Li +2 位作者 Jun Yan Yuqian Wang Na Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1490-1499,共10页
To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)mo... To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)model optimized by the improved particle swarm optimization(IPSO)and chaos optimization algorithm(COA)for short-term load prediction of IES.The proposed model overcomes the disadvantages of the slow convergence and the tendency to fall into the local optimum in traditional WNN models.First,the Pearson correlation coefficient is employed to select the key influencing factors of load prediction.Then,the traditional particle swarm optimization(PSO)is improved by the dynamic particle inertia weight.To jump out of the local optimum,the COA is employed to search for individual optimal particles in IPSO.In the iteration,the parameters of WNN are continually optimized by IPSO-COA.Meanwhile,the feedback link is added to the proposed model,where the output error is adopted to modify the prediction results.Finally,the proposed model is employed for load prediction.The experimental simulation verifies that the proposed model significantly improves the prediction accuracy and operation efficiency compared with the artificial neural network(ANN),WNN,and PSO-WNN. 展开更多
关键词 Integrated energy system(IES) load prediction chaos optimization algorithm(COA) improved particle swarm optimization(IPSO) Pearson correlation coefficient wavelet neural network(WNN)
原文传递
A method for weighing broiler chickens using improved amplitude-limiting filtering algorithm and BP neural networks 被引量:7
15
作者 Weihong Ma Qifeng Li +2 位作者 Jiawei Li Luyu Ding Qinyang Yu 《Information Processing in Agriculture》 EI 2021年第2期299-309,共11页
Broiler chickens are traditionally weighed by steelyard or platform scale,which is timeconsuming and labor-intensive.Broiler chickens usually exhibit stress-related behavior during weighing.The 3D camera-based weighin... Broiler chickens are traditionally weighed by steelyard or platform scale,which is timeconsuming and labor-intensive.Broiler chickens usually exhibit stress-related behavior during weighing.The 3D camera-based weighing system for broiler chickens can only weigh the broiler chicken in the monitoring area.Usually,it makes poor weight prediction due to poor segmentation especially when the broiler chicken is flapping its wings.To solve these issues,we developed one simple and low-cost weighing system with high stability and accuracy.A validity value extraction method from dynamic weighing was proposed.Then,an improved amplitude-limiting filtering algorithm and a BP neural networks model were developed to avoid accidental interference.The BP neural networks model used daily weight gain,day-age,average velocity,and the weight data after filtering algorithm as the input layer.The weighing system was tested in a commercial Beijing Fatty Chickens house with Beijing Fatty Chickens.We tested thirteen groups of Beijing Fatty Chickens of different weights,from 500 g to 1800 g in intervals of 100 g,using the three different methods:no filtering algorithm or BP neural networks,only the improved amplitude-limiting filtering algorithm and a hybrid of the improved amplitude-limiting filtering algorithm and BP neural networks.The results showed that the hybrid algorithm had a better performance in minimizing the error,lowering from the original 6%down to 3%.The accurate weight data was transmitted to the remote service platform for further decision-making,such as activity analysis,feeding management,and health alerts. 展开更多
关键词 Weighing of broiler chickens improved amplitude-limiting filtering algorithm BP neural networks Dynamic weighing
原文传递
IPSO-BP神经网络在渭河天水段水质评价中的应用 被引量:18
16
作者 王彤彤 张剑 +3 位作者 涂川 赵文芳 陈明明 赵成章 《环境科学与技术》 CAS CSCD 北大核心 2013年第8期175-181,共7页
水质评价是进行水环境容量计算和实施水污染控制规划的重要基础,能为改善河流水资源污染程度,保护河流水资源提供方向性、原则性的方案和依据。文章通过改进的PSO算法优化BP神经网络的权值和阈值,获得最优权值和阈值后建立IPSO-BP神经... 水质评价是进行水环境容量计算和实施水污染控制规划的重要基础,能为改善河流水资源污染程度,保护河流水资源提供方向性、原则性的方案和依据。文章通过改进的PSO算法优化BP神经网络的权值和阈值,获得最优权值和阈值后建立IPSO-BP神经网络水质评价模型,针对关中-天水经济区中天水段地表水质,利用2003-2009年渭河天水段4个控制断面的监测数据,选取BOD5、DO、氨氮、总磷、高锰酸盐指数5个指标进行综合评价,并分析了污染现状及时空变化规律。结果表明,改进的PSO-BP神经网络泛化能力强,评价更客观;7年间水质有一定程度的改善,但总体变化不大,水质类别主要为Ⅱ类和Ⅲ类,其中北道桥断面污染最为严重。研究旨在有效控制渭河流域天水段污染,为渭河水资源的保护提供科学依据。 展开更多
关键词 改进的PSO算法 BP神经网络 水质评价 渭河天水段
下载PDF
基于IQPSO-BP算法的煤矿瓦斯涌出量预测 被引量:11
17
作者 程加堂 艾莉 熊燕 《矿业安全与环保》 北大核心 2016年第4期38-41,共4页
针对煤矿回采工作面瓦斯涌出的非线性特征,提出一种基于改进量子粒子群优化BP神经网络(IQPSO-BP)的瓦斯涌出量预测方法。鉴于量子粒子群算法的遍历能力有限,采用混沌序列来初始化量子的初始角位置。同时,采用凸函数调整惯性权重,以平衡... 针对煤矿回采工作面瓦斯涌出的非线性特征,提出一种基于改进量子粒子群优化BP神经网络(IQPSO-BP)的瓦斯涌出量预测方法。鉴于量子粒子群算法的遍历能力有限,采用混沌序列来初始化量子的初始角位置。同时,采用凸函数调整惯性权重,以平衡算法的全局勘探和局部开发能力。并依此来优化BP神经网络的权值、阈值参数,进而建立了瓦斯涌出量预测模型。试验结果表明,IQPSO-BP算法具有较强的泛化能力及较高的预测精度,可有效用于煤矿瓦斯涌出量的预测。 展开更多
关键词 瓦斯涌出量 预测 改进量子粒子群优化算法 BP神经网络
下载PDF
ANN Model and Learning Algorithm in Fault Diagnosis for FMS
18
作者 史天运 王信义 +1 位作者 张之敬 朱小燕 《Journal of Beijing Institute of Technology》 EI CAS 1997年第4期45-53,共9页
The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network st... The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm 展开更多
关键词 fault diagnosis for FMS artificial neural network(ANN) improved BP algorithm optimization genetic algorithm learning speed
下载PDF
基于IPSO-BP神经网络的跟踪微分器 被引量:2
19
作者 王坤 《舰船电子工程》 2018年第3期98-102,112,共6页
为了解决跟踪微分器中未知参数的整定问题,论文提出了基于IPSO-BP神经网络的跟踪微分器的设计方法。文中研究了跟踪微分器的连续时间和离散时间两种常见的数学模型,分析了未知参数与输出信号精度之间的相关性,给出了待定参数设计方法的... 为了解决跟踪微分器中未知参数的整定问题,论文提出了基于IPSO-BP神经网络的跟踪微分器的设计方法。文中研究了跟踪微分器的连续时间和离散时间两种常见的数学模型,分析了未知参数与输出信号精度之间的相关性,给出了待定参数设计方法的具体步骤。该方法不仅适用于单个跟踪微分器的设计,而且还适用于任意阶次的跟踪微分器的设计,用以获取二阶以上的微分信号。最后,通过对单个和直接级联系统的仿真实验,验证了文中所提方法的正确性,对控制系统中微分信号的提取具有一定工程应用价值。 展开更多
关键词 跟踪微分器 改进型粒子群算法 BP神经网络
下载PDF
基于改进型PSO-BP神经网络算法的水质评价 被引量:4
20
作者 陈子豪 龙华 曹伟 《信息技术》 2017年第8期11-15,20,共6页
环境污染现在是大众所关注的一个重要的问题,需要拿出科学的方法和手段应对这个问题。文中提出了一种改进型的PSO-BP神经网络相结合的环境质量评价方法,以大理的洱海水域为例,选取了实际的水质监测数据作为样本,进行了系统的分析。通过... 环境污染现在是大众所关注的一个重要的问题,需要拿出科学的方法和手段应对这个问题。文中提出了一种改进型的PSO-BP神经网络相结合的环境质量评价方法,以大理的洱海水域为例,选取了实际的水质监测数据作为样本,进行了系统的分析。通过对传统的BP神经网络法、PSO-BP神经网络和改进型PSO-BP算法三种方法应用结果的对比,本文得出改进的PSO-BP神经网络方法在相同精度下拥有更高的效率。 展开更多
关键词 水质评价 BP神经网络 粒子群 改进pso-bp神经网络算法
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部