The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very crit...The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very critical.In this study,the one‐dimensional ternary model which has been proved to be an effective statistical method in feature selection is introduced and shapelet transformation is proposed to calculate the parameter of one‐dimensional ternary model that is usually selected by trial and error.Then XGBoost is used to recognise the faults from the obtained features,and artificial bee colony algorithm(ABC)is introduced to optimise the parameters of XGBoost.Moreover,for improving the performance of intelligent algorithm,an improved strategy where the evolution is guided by the probability that the optimal solution appears in certain solution space is proposed.The experimental results based on the failure vibration signal samples show that the average accuracy of fault signal recognition can reach 97%,which is much higher than the ones corresponding to traditional extraction strategies.And with the help of improved ABC algorithm,the performance of XGBoost classifier could be optimised;the accuracy could be improved from 97.02%to 98.60%compared with the traditional classification strategy.展开更多
Flying Ad hoc Network(FANET)has drawn significant consideration due to its rapid advancements and extensive use in civil applications.However,the characteristics of FANET including high mobility,limited resources,and ...Flying Ad hoc Network(FANET)has drawn significant consideration due to its rapid advancements and extensive use in civil applications.However,the characteristics of FANET including high mobility,limited resources,and distributed nature,have posed a new challenge to develop a secure and ef-ficient routing scheme for FANET.To overcome these challenges,this paper proposes a novel cluster based secure routing scheme,which aims to solve the routing and data security problem of FANET.In this scheme,the optimal cluster head selection is based on residual energy,online time,reputation,blockchain transactions,mobility,and connectivity by using Improved Artificial Bee Colony Optimization(IABC).The proposed IABC utilizes two different search equations for employee bee and onlooker bee to enhance convergence rate and exploitation abilities.Further,a lightweight blockchain consensus algorithm,AI-Proof of Witness Consensus Algorithm(AI-PoWCA)is proposed,which utilizes the optimal cluster head for mining.In AI-PoWCA,the concept of the witness for block verification is also involved to make the proposed scheme resource efficient and highly resilient against 51%attack.Simulation results demonstrate that the proposed scheme outperforms its counterparts and achieves up to 90%packet delivery ratio,lowest end-to-end delay,highest throughput,resilience against security attacks,and superior in block processing time.展开更多
An improved artificial bee colony-random forest(IABC-RF)model is proposed for predicting the tunnel deformation due to the excavation of an adjacent foundation pit.A new search strategy of the artificial bee colony(AB...An improved artificial bee colony-random forest(IABC-RF)model is proposed for predicting the tunnel deformation due to the excavation of an adjacent foundation pit.A new search strategy of the artificial bee colony(ABC)algorithm is herein developed and incorporated,with the results showing that a much higher computational efficiency can be achieved with the new model,while high computational accuracy can also be maintained.The improved ABC algorithm is thereafter utilised and combined with the random forest(RF)model,where four important hyper-parameters are optimized,for a tunnel deformation prediction.Results are thoroughly compared with those of other prediction methods based on machine learning(ML),as well as the monitored data on the site.Via the comparisons,the validity and effectiveness of the proposed model are fully demonstrated,and a more promising perspective can be seen of the method for its potential wide applications in geotechnical engineering.展开更多
针对复杂产品装配序列规划耗时、效率低且错误率高等问题,提出了一种基于改进人工蜂群算法的装配序列规划解决方案。首先,综合考虑装配序列的可行性、复杂性、稳定性、重定向性、聚合性等多个因素,构建基于矩阵的装配关系模型及适应性...针对复杂产品装配序列规划耗时、效率低且错误率高等问题,提出了一种基于改进人工蜂群算法的装配序列规划解决方案。首先,综合考虑装配序列的可行性、复杂性、稳定性、重定向性、聚合性等多个因素,构建基于矩阵的装配关系模型及适应性评价函数;其次,通过调用SolidWorks中的应用程序接口(application program interface, API)获取装配对象的相关数据,生成装配关系矩阵,以求装配序列规划问题;最后,以冷藏车的典型零件为对象,验证该方法的可行性。该技术显著缩短了检查时间和减小了错误率,同时提高了效率。展开更多
基金National Nature Science Foundation of China,Grant/Award Number:U1813201the Key Scientific Research Projects of Henan Province,Grant/Award Number:22A413011+2 种基金the Training Program for Young Teachers in Universities of Henan Province,Grant/Award Number:2020GGJS137Henan Province Science and Technology R&D projects,Grant/Award Number:202102210135,212102310547 and 212102210080High‐end foreign expert program of Ministry of Science and Technology,Grant/Award Number:G2021026006L。
文摘The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very critical.In this study,the one‐dimensional ternary model which has been proved to be an effective statistical method in feature selection is introduced and shapelet transformation is proposed to calculate the parameter of one‐dimensional ternary model that is usually selected by trial and error.Then XGBoost is used to recognise the faults from the obtained features,and artificial bee colony algorithm(ABC)is introduced to optimise the parameters of XGBoost.Moreover,for improving the performance of intelligent algorithm,an improved strategy where the evolution is guided by the probability that the optimal solution appears in certain solution space is proposed.The experimental results based on the failure vibration signal samples show that the average accuracy of fault signal recognition can reach 97%,which is much higher than the ones corresponding to traditional extraction strategies.And with the help of improved ABC algorithm,the performance of XGBoost classifier could be optimised;the accuracy could be improved from 97.02%to 98.60%compared with the traditional classification strategy.
基金This paper is supported in part by the National Natural Science Foundation of China(61701322)the Young and Middle-aged Science and Technology Innovation Talent Support Plan of Shenyang(RC190026)+1 种基金the Natural Science Foundation of Liaoning Province(2020-MS-237)the Liaoning Provincial Department of Education Science Foundation(JYT19052).
文摘Flying Ad hoc Network(FANET)has drawn significant consideration due to its rapid advancements and extensive use in civil applications.However,the characteristics of FANET including high mobility,limited resources,and distributed nature,have posed a new challenge to develop a secure and ef-ficient routing scheme for FANET.To overcome these challenges,this paper proposes a novel cluster based secure routing scheme,which aims to solve the routing and data security problem of FANET.In this scheme,the optimal cluster head selection is based on residual energy,online time,reputation,blockchain transactions,mobility,and connectivity by using Improved Artificial Bee Colony Optimization(IABC).The proposed IABC utilizes two different search equations for employee bee and onlooker bee to enhance convergence rate and exploitation abilities.Further,a lightweight blockchain consensus algorithm,AI-Proof of Witness Consensus Algorithm(AI-PoWCA)is proposed,which utilizes the optimal cluster head for mining.In AI-PoWCA,the concept of the witness for block verification is also involved to make the proposed scheme resource efficient and highly resilient against 51%attack.Simulation results demonstrate that the proposed scheme outperforms its counterparts and achieves up to 90%packet delivery ratio,lowest end-to-end delay,highest throughput,resilience against security attacks,and superior in block processing time.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52178386,51808193,and 51979270).
文摘An improved artificial bee colony-random forest(IABC-RF)model is proposed for predicting the tunnel deformation due to the excavation of an adjacent foundation pit.A new search strategy of the artificial bee colony(ABC)algorithm is herein developed and incorporated,with the results showing that a much higher computational efficiency can be achieved with the new model,while high computational accuracy can also be maintained.The improved ABC algorithm is thereafter utilised and combined with the random forest(RF)model,where four important hyper-parameters are optimized,for a tunnel deformation prediction.Results are thoroughly compared with those of other prediction methods based on machine learning(ML),as well as the monitored data on the site.Via the comparisons,the validity and effectiveness of the proposed model are fully demonstrated,and a more promising perspective can be seen of the method for its potential wide applications in geotechnical engineering.
文摘针对复杂产品装配序列规划耗时、效率低且错误率高等问题,提出了一种基于改进人工蜂群算法的装配序列规划解决方案。首先,综合考虑装配序列的可行性、复杂性、稳定性、重定向性、聚合性等多个因素,构建基于矩阵的装配关系模型及适应性评价函数;其次,通过调用SolidWorks中的应用程序接口(application program interface, API)获取装配对象的相关数据,生成装配关系矩阵,以求装配序列规划问题;最后,以冷藏车的典型零件为对象,验证该方法的可行性。该技术显著缩短了检查时间和减小了错误率,同时提高了效率。